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Uvod

Predkladana habilitaéni prace obsahuje soubor mych vybranych publikaci spolu
s ivodnim textem, ktery je zafazuje do $ir§iho kontextu vychazejiciho z historie
diskrétni pocitacové simulace (dale jen simulace), kterd je predmétem mého
odborného zamefeni. V tvodu také odkazuji na nékteré své prace které souviseji se
simulaci, ale nezapadaji do dvou oblasti kterymi se déle zabyvam podrobngji
v kapitolach 1 a 2. Za t€mito kapitolami nasleduje seznam mych publikaci a nékterych
nepublikovanych praci, tfidény podle odbornych oblasti a ¢asu. Nasleduje seznam
pouzitych odkazi na préce jinych autort, které rozlisuji rozdilnym forméatem. Vybrané
prace jsou zafazeny v piilohach.

Existuje mnoho neformalnich i formélnich definic simulace. Jednou z prvnich a velmi
vystiznych je definice Dahlova (Dahl 1966): “Simulace je vyzkumna metoda, jejiz
podstata spociva v tom, ze zkoumany dynamicky systém nahradime jeho modelem a
snim provadime pokusy scilem ziskat informaci o plivodnim systému®, Potfeba
simulace je déna znémou skuteénosti, Ze pro mnoho problémf, které je vzhledem k
jejich rozsahlosti a sloZitosti nutné fe$it pomoci poditade, neni k dispozici
matematicky model, ktery by umozZiioval piimy vypocet. Simulace je proto téméf
stejné stard jako samocCinné pocitace. Autofi simulaénich modelt si brzy uvédomili, Ze
psat simula¢ni modely v obecnych programovacich jazycich je piili§ slozité. Je to
ddno zejména tim, Ze simulaéni model ma ve srovnéni s jinymi programy jednu
dimenzi navic — ¢as. Rizeni ¢asové osy Je relativné naro¢ny programatorsky problém
(predpokladdm ze ¢tendf je obeznamen se zakladnimi principy diskrétni simulace'
orientované na udalosti resp. procesy). Jelikoz se jedna o problém, ktery je nutné fesit
v kazdém simulaénim modelu, vznikl zde prostor pro vytvoreni simulaénich jazykd a
nastroji, které praci s ¢asem, a také fadu jinych prostiedkd, jiz obsahuji bud'to ve
formé piikazii nebo ve formé€ knihovnich procedur. Jednim z prvnich byl jazyk
Simscript vytvofeny firmou Rand Corp. zagatkem 60. let (Markowitz 1963). Pravé
tento jazyk byl zakladem jazyka Simscript T200 ktery jsem implementoval v ramci
vyzkumného projektu “Modelovani a Simulace™ na katedfe matematiky FE VUT v 70.
letech - [9], [10]. Jazyk Simscript T200 byl obohacen o moZnost automatizovanych
repetiénich vypoctli, coz v piivodnim jazyce mozné nebylo - [3]. Kompilator a “run-
time” rutiny byly napsany v jazyce symbolickych adres APS. Pfesto, Ze implementace
simulaé¢niho jazyka na pocitaci s vnitini paméti 128KB dnes vypad4 sméing, v tomto
jazyce byla vytvofena fada malych a stiedné slozitych demonstraénich modeld a také
n€kolik praktickych simula¢nich studii. Pozd&i jsem pouZival jazyk Simsecript II
implementovany ve Vyzkumném ustavu matematickych strojii na poéitaéich tady
JSEP. To umoznilo realizaci celé fady simulaénich studi{ komunikaénich systémii a
Casti pocitacovych siti v ramei spoluprace mezi Katedrou telekomunikaci FE VUT a
Vyzkumnym ustavem spojovaci techniky v Praze a Ustavem aplikované kybernetiky v
Bratislave. Vysledky byly shrnuty v pracech [20] az [24], [48] a [52]. V 80. letech se
pak podafilo ziskat implementaci jazyka Simula pro poéitate fady JSEP. Pro
praktickou simulaci tak bylo moZné pouzit objektové orientované programovani v

' Skutenost, ze se v této praci zabyvam vylucné diskrétni simulaci, vyplyva z mého zaméfeni
a neznamend, ze bych povazoval simulaci spojitou za méné duleZitou. Z programatorského
hlediska je spojitd simulace v podstaté deklaracni popis problému, at uz formou popisu
Jednotlivych bloki a jejich propojeni, nebo vyétem rovnic. Spojité jazyky zalozené na prvnim
principu jsou dnes jiz nahrazeny grafickym rozhranim interaktivnich simulaénich prostfedi.

P
2




systémové tiidé Simulation tohoto jazyka. Bylo to bohuzel jiz v dobg, kdy stfediskové
pocitace dozivaly a zaCala simulace na osobnich pocitacich.

Simulaéni jazyky velmi ulehéily programovani simula¢nich modeld. Vystoupil tak do
popiedi jiny problém - metodika simulace. Bez zachdzeni do detailti jde o to, Ze
simulace je v podstaté dvoustupfiova. Nejdiive vymezujeme tzv. simulovany systém,
ktery je uritym popisem té ¢asti objektivni reality, ktera nas zajima’. Dalsi fazi je pak
vytvofeni simulaéniho modelu - programu. Témér soucasné s vyvojem mmulacmch
jazyku proto zagal vyvoj prostiedkil uréenych k popisu simulovanych systémt’, Prace
byly zaméfeny jednak na analyzu vyrazovych prostiedkl jiz existujicich a také na
vyvoj nastrojii novych. Do prvni kategorie zapadd vyuZiti tehdy mdédni Obecné teorie
systému. Typickym piikladem je dnes jiz klasickd kniha (Zeigler 1976). Touto
problematikou jsme se také zabyvali v ramei vySe zminéného vyzkumného projektu
na Katedfe matematiky FE VUT. Teoretické vysledky byly publikovany v pracech
[1], [2]. praktickymi aplikacemi se pak zabyvaji prace [4], [5], [25], [26], [50] a [57].
Do oblasti metodiky simulace lze také zafadit praci formalizujici nahodné zobrazeni -
[6] a vyuziti fuzzy &isel pii simulaci s nepfesnymi vstupnimi daty - [7], [8]. Formalni
vyrazové prostiedky nejsou pouzivany pouze pii simulaci. Vznikla celd fada
prostiedkl pro popis technickych systémi a programi. Jednim znich je jazyk SDL
(Specification and Description Language), urceny k popisu telekomunikacnich
systémii, zejména elektronickych tstieden s programovym fizenim. Jazykem SDL se
zabyvaji prace [54], [55] a [56].

Mys, ktera prisla spolu s osobnimi poc¢itaci, pfinesla z hlediska simulace zménu zcela
zasadni. Grafické uzivatelské rozhrani umoznilo vyvoj simulaénich prostredl kde je
programovani velmi potlaeno, popifipadé neni nuiné vibec. Jazyky, které byly v
podstaté textovym popisem blokt, jejich propojeni a parametrii, jiz nejsou zapotiebi.
To se tyka vétdiny jazykt pro spojitou simulaci, jazyka Dynamo pro podporu techniky
zvané Systémova dynamika (System Dynamics) — (Forrester 1961) a v oblasti
simulace diskrétni jazyka GPSS. Pro spojitou simulaci dnes existuji nastroje jako
napt. Simulink v Matlabu (MathWorks, Inc.), pro Systémovou dynamiku je k
dispozici mimo jiné napi. Powersim (Powersim Corporation). Jazyk GPSS je pak v
podstaté nahrazen prostiedky jako Arena - (Kelton 2002) nebo Extend - (Imagine
That, Inc.), ktery lze pouZit i pro simulaci spojitou, kde nevadi jeho primitivni
integraéni metody. Znamena to konec programovani simulaénich modeldi? Ur€ité ne.
Viechny vyse uvedené grafické prostiedky jsou velmi lakavé tim, Ze jejich pouzivani
je pomérné jednoduché a praci s menSimy modely lze zatit ihned prakticky bez
pripravy. To je velmi vyhodné z hlediska vyuky. Napf. v rdmei pfedmétu “Modelling
and Simulation”, ktery uéim v prvnim ro¢niku oboru “Statistics and Operations
Research” na maltské univerzité, studenti zvladnou b&hem jednoho semestru Extend a
Powersim do té miry, Ze jsou schopni vypracovat projekt, ktery obsahuje netrividlni
simulaéni model. Na druhé strané pii budovani rozsahlejsich modeld se rychle zaénou
projevovat nevyhody téchto prostiedki. Pfedevsim je to jejich velka mira specializace.
Napf. Extend, ktery je nabizen jako obecny simuldtor, je v podstaté souborem

: Poznamenejme pro aplnost, ze predmétem simulace muze byt i systém abstrakini nebo
dosud neexistujici, napf. ve fazi pleektu

* NékteFi autofi ponechavau pojem snnu!ovany systém* k oznaceni samotné Casti objektivni
reality, jeji popis je pak oznatovan jako "simulujici systém®. V obou pfipadech se viak
prevad: formalni uréitym zplsobem vyjadieny systém do simulaéniho programu.

* Zahranigni prameny (Pidd 1998) pouzivaji napf. termin “Visual Interactive Modelling
System* (VIMS). Vieobecné akceptovany termin nezném.




nékolika specializovanych nastroji. Kazdy je reprezentovan souborem ikon, které
predstavuji typické bloky, které se vyskytuji pfi simulaci v té ¢i oné oblasti, napf.
integrator nebo fronta. Je pravda, ze mnoho modelii pak lze jednoduSe vytvofit
malovanim my$i na obrazovce. Jejich pouziti pfi simulaci je stejné pohodlné.
Problémy zaénou, kdyZ narazime na blok nebo funkci, pro kterou neni k dispozici
ikona. Césteénym feSenim je ta skute¢nost, ze napf. Extend obsahuje jazyk zvany
Modl (podobny jazyku C), kterym lze naprogramovat v podstaté libovolné uZivatelské
bloky. To je vSak jiz dosti pracné, protoZe to znamena vazbu na programové prostiedi,
jehoz odstinéni od uZivatele je pravé principem téchto prostfedki. Podobné v prostiedi
Arena lze programovat uzivatelské bloky v simulaénim jazyce Siman. Dal3i
nevyhodou je statika topologie. Jen velmi tézko se vytvari modely, kde bloky vznikaji
a zanikaji, coZz se samoziejmé netyka transakci. Casteénym fedenim je moZnost
ovliviiovat prichod transakei siti na zakladé jejich atributi nebo systémovych
proménnych, ale i to znamena Casto neimérny ndrust slozitosti modelu. Spoleénym
problémem je také prace s velkymi sitémi, ne vSechny prostredky umoziuji - jako
napf. Extend - praci s hierarchickymi bloky, které jsou uvnitf sitémi a to na vice
arovnich. Casto je pak vyhodnéjsi model naprogramovat. Bylo by jisté zajimavé
zjistit, jaké procento simulaénich modelii je jesté dnes vyhodné programovat. Mnoho
se jich totiz programuje v podstaté ze setrvanosti, nebo z diivodu nedostupnosti
nékterého z grafickych prostiedi.

Néktera grafickd simulacni prostfedi jsou zalozena na ur¢itém formélnim piesné
definovaném matematickém jazyce. Potom lze vyuzit piislusnych teoretickych
vysledkil napt. k analyze modelu a ziskat tak o ném udaje bez nutnosti simulace. Pro
simulaci mize byt vyhodou existence obecného formalniho vyrazového jazyka.
Typickym piikladem jsou prostiedi zalozend na Petriho sitich. Jednim z nich je
PetriSim, kterym se zabyva nasledujici kapitola.

Po mysi byl dalsim vyraznym stimulem pro rozvoj simulace Internet a to z nékolika
hledisek. Internet v prvé fadé reprezentuje novou platformu, kterou musely akceptovat
viechny operaéni systémy. Pies ur¢ité vyhrady tak mame poprvé v historii univerzalni
jednotné prostredi, coZ lze vyuZit napf. k distribuci simulaénich model doslova
komukoliv, kdo je napojeny na Internet. Déle lze poprvé skute¢né vyuzit pfi simulaci
paralelismus. Myslenka paralelni simulace neni nova, ale az dosud byly
v1cep10ceso:ove systémy béznému uzivateli nedostupné. Programovacimi jazyky
Internetu jsou zejména Java a JavaScript’. Pro Javu existuje nékolik simula¢nich
knihoven. Pokud je mi znamo, jediny prostiedek pro simulaci v JavaScriptu je JSSim
popsany v kapitole 2.

Zcela zamérné jsem jako vyrazny stimul pro rozvoj simulace neuvedl rozsifeni
objektové orientovaného programovani koncem 80. a zatitkem 90. let, které
znamenalo stéle jesté doznivajici revoluci v programovani samoéinnych pocitacu. Je
to proto, ze simulace v prvé fadé techniky objektoveho programovani (jako napf. praci
s entitami-objekty) pouzwala od sameého pocatku Diale pak samotne objektoveé
orientované programovéni bylo vynalezeno pfi vyvoji jazyka Simula® koncem 60. let.

’ Nazey JavaScript vlastni firma Netscape, tentyZ jazyk oznacuje Microsoft jako JSeript. Oba
JﬂZyLy by mély odpovidat normé ECMA-262 (ISO-16262), proto také existuje nepouzivany
nazev ECMAScript. Rozdily sice existuji, ale lze se jim vyhnout.

® Simula (Simple Universal Language) samotna je piisné vzato obecny objektové orientovany
jazyk bez jakékoliv vazby na simulaci. Teprve tzv. systémova tiida Simulation repr ezentuje
diskrétni procesové orientovany simulaéni jazyk. Pokud tedy mluvime o simulaci v Simule,
myslime tim dvojici Simula + Simulation nebo Simula + néjaka jind simulaéni tfida.




1 PetriSim

PetriSim, jehoZ jsem autorem, vznikl ptivodné jako jednoduchy graficky editor a
simulator Petriho siti pro potfeby vyuky. Postupné byl obohacovan tak, Zze ve dnesni
verzi 4 lze PetriSim oznadit za prostiedi urené k diskrétni simulaci zaloZené na
grafickém jazyce Petriho siti. Tato kapitola je ivodem a komentafem k pracem
zatazenym v priloze A. '

1.1 Petriho sité

Vroce 1962 podal Karl Adam Petri doktorskou praci “Kommunikation mit
Automaten®, kde piedstavil specidlni typ orientovanych grafti, které dnes nazyvame
Petriho sité. Graf je tvofeny dvéma typy uzld - tzv. misty (places) a pfechody
(transitions), které jsou propojené hranami (arcs). Mista mohou byt oznacena tzv.
znatkami (tokens). Jedna z nékolika ekvivalentnich definic je uvedena v praci [A2],
kde je pouzit plivodni nazev Marked Petri Net. Teorii a aplikacemi Petriho siti se
zabyva dnes jiz velmi rozséhld a stale se rozvijejici védni disciplina. Sit€ v piivodni
verzi, které se dnes oznacuji jako Place/Transition (Pl/Tr) Nets, mély silné analyticke,
aviak velmi slabé vyjadfovaci (modelovaci) schopnosti. To zpisobilo vznik velmi
mnoha modifikaci, které piivodni definici vzdy ur¢itym zpisobem obohacuji. Tato
rozsifeni se vétsinou oznaduji spoleénym nazvem High-level Petri Nets, nékteré maji
vlastni nazev jako napt. Coloured Petri Nets. V této praci se nebudu zabyvat teorii
Petriho siti a rtznymi jejich modifikacemi. Uvod do této teorie obsahuji napf.
monografie (Peterson 1981) a (Starke 1980), rozsifenimi se zabyvaji napt. clanky
(Diaz 1982), (Murata 1989) nebo &lanky ve sborniku (Reisig 1998a), kde je i nékolik
&lankt Gvodnich. Publikaci zabyvajicich se Petriho a z nich odvozenymi sitémi jsou
jiz tisice, samotna orientace v mnoha typech siti je ndroéna. Velmi mnoho dalsich
odkazfi lze ziskat na strankach Petri Nets World na Aarhuzské Universit€ v Dansku
(http://www.daimi.au.dk/PetriNets/). V ¢estiné je k dispozici prace (Ceska 1994).
Existuji také desitky programi které lze oznagit jako prostfedi pro praci s Petriho
sitémi. Stranky Petri Nets World obsahuji databazi téchto programi kterd obsahuje i
PetriSim.

Aplikace Petriho siti - viz napf. sbornik (Reisig 1998b) - lze rozdélit do dvou
kategorii: analytické a simulacni. Analytické aplikace zaloZené na analytickych
schopnostech Petriho siti postupuji nasledovné: zkoumany systém je vyjadien Petriho
siti, ta je analyzovana a podle vysledku pak lze usuzovat o vlastnostech pivodniho
systému. Napf. je-li sit’ reprezentujici komunikaéni protokol tzv. Ziva, znamena to, ze
protokol neobsahuje deadlock. Jinym piikladem je vlastnost zvand k-omezenost (k-
boundedness). Znamen4, ze Z4dné misto neobsahuje nikdy vice nez k znacek. Pokud
je Petriho siti modelovan vyrobni systém, tato skuteGnost miiZze napi. znamenat, zZe
7adny dopravni pas nebude nikdy obsahovat vice nez k vyrobku, coz muze byt
testovanou podminkou. Pouziti Petriho siti k analyze vyrobniho systému (konkrétné
stadirny napoji na Malt€) je vénovéna price [40]. Nejvetsim problémem analyzy
Petriho siti je exploze poétu stavii. I pomémné malé sit€ mohou mit tisice riznych
oznaleni, coz mtze analyzu stfednich a velkych siti i na dnesnich pocitadich zcela
znemoznit. Dale se budu zabyvat aplikacemi simula¢nimi na které je PetriSim
orientovan. Ty lze charakterizovat tak, Ze simulovany. systém ma formu néjaké Petriho
sit¢. Tu pak simulujeme a vysledky opét interpretujeme vzhledem k ptivodnimu
systému. Poznamenejme, ze v kontextu Petriho siti se simulaci nazyva i vypocet, ktery
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neprobiha v gase. Simulaci je pak samotna posloupnost provadéni prechodi typicky
s cilem analyzovat, nebo dokéazat spravnost n€jakého protokolu.

1.2 Petriho sité a simulace

Pokud ma byt Petriho sit’ pouZita jako graficky jazyk k vyjadfeni simula¢niho modelu,
je nutné doplnit piivodni definici o Cas. Piistupti existuje nékolik, souhrnné se pak
témto sitim fika Casové sité (Timed Nets). Cas lze definovat ve vztahu k mistim,
prechodtim, nebo i hrandm. Viz popis napi. vknize (Desrochers 1995). Sité
v PetriSimu jsou zalozeny na zpozdéni v prechodech, coZ je nejCast€jsi pfistup.
Mechanismus je tento: provedeni (firing) pfechodu trvé ur€itou dobu. Pti zahdjeni
provedeni jsou zna¢ky vyjmuty ze vstupnich mist, pfi ukoneni provedeni jsou znacky
umistény do vystupnich mist. Trvani pxovedem’ definuje uzivatel, mize byt
konstantni, zavislé na stavu sité nebo nahodné’. Trvani provedeni prechodu lze pouZit
k fizeni casové osy u véech tii zakladnich principti ¢asovani disktréinich simulaénich
modeld. '

Aktivity

Simulagni jazyky zaloZené na aktivitich (Activity Oriented Languages) nepouzivaji
explicitni planovani pnstlch udalosti. Pro kazdou ¢innost (aktivitu) v modelu je zadan
soubor podminek, pii jejichZ splnéni mtize byt aktivita provedena. PouZiti Petriho siti
pii této formalizaci dynamiky je naprosto pfirozené. Aktivita = provedeni prechodu je
podminéna pritomnosti znatek ve vstupnich mistech pfechodu, které tak modelujl
splnéni danych podminek — viz. obr. 1, ktery byl stejné jako vSechny sit€ v této préaci
nakreslen grafickym editorem PetriSimu. Posun v case je realizovan trvanim
provedeni.
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Obr.1: Model podminéné aktivity Petriho siti.

Metodika modelovani pii tomto piistupu, ktery je také oznaCovén jako Interrogative
Scheduling, tedy spo¢iva v definici aktivit (pfechodil), podminek jejich provedeni
(oznageni vstupnich mist) a vysledkii téchto provedeni (oznaceni vystupnich mist).
Toto je také zakladni princip modelovéani pomoci Petriho siti.

Tzv. Stochastické Petriho sit¢ (SPN) s exponencialnim rozdélenim trvani provedeni
prechodii umoziuji piimy vypocet parametrii bez potf'eby simulace. Lze je reprezentovat
Maskovskym procesem se spojitym ¢asem. Problémem je opét exploze poétu stavil. Jejich
pouzitim se zabyvaji napt. knihy (Haverkort 1998) a (Lindemann 1998).




Udalosti

Pii simulaci orientované na udalosti fidime pohyb v ¢ase pomoci dvou primitiv:
naplanovani vyskytu ur¢ité udalosti e v ¢ase t,>t, kde ¢ je okamzity ¢as a zruSeni
vyskytu jiz naplanované udalosti e. Prvni z nich se vyskytuje ve dvou variantach:
“schedule e at t;* nebo “schedule e afier d"* kde d je nezaporné zpozdéni. Je ziejmé, Ze
prvni formu lze ptevést na druhou: “schedule e after (1,-t)* a naopak: “schedule e at
(t+d)*. Simula¢ni jazyky orientované na udélosti maji piikazy, které toto planovani
provadi piimo. Napf. v Simscriptu piesné tak, jak je zde uvedeno. Mame-li k dispozici
pouze Petriho sit’ se zpozdénim v piechodech, je nutné naplanovani udalosti prevést
na vytvofeni procesu, ktery provede nasledujici: “wait d; activate ¢ — viz obr. 2, kde
provedeni piechodu Wait trva d. Prestoze kresleni Petriho siti neni zcela
normalizovane, ¢asované prechody se vétSinou odliSuji od okamzitych pfechodi tak,
jak je to znazornéno na obr.2. Aktivace udélosti = piechodu e pak nasleduje okamzité.
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Obr.2: Planovani udalosti Petriho siti.

Zrudeni naplanované udalosti “cancel e* je jiz slozit€j§i, ¢aste¢né feSeni je uvedeno na
obr. 3, kde piechod Schedule zahéji planovani. Jediny ¢asovany pfechod je o, ¢ili
znacka je do mista confirm umisténa okamzité, do mista start aZ po uplynuti prodlevy.
Udalost e pak nasleduje pokud ob& mista stari a confirm obsahuji znacku. Zru3eni
napléanované udalosti provede piechod Cancel, ktery vyjme znacku z mista confirm.
Po uplynuti prodlevy pak ptechod clear uvede celou sit” do ptivodniho stavu.
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Obr.3: Planovani udalosti s moznosti zruseni.

Jedna se pouze o feSeni Sastecné, dalsi udalost totiz lze naplanovat aZ po uplynuti
pivodni prodlevy, i kdyZz minula udalost byla jiz predtim zrudena. Tento problém
nelze vyfesit bez prijeti dal§ich predpokladi o chovéni Petriho sité, protoze zatim
plati, 7e jednou zah4jené provedeni prechodu uz nelze pferusit. Tento nedostatek
Nepovazuji za zdvazny, protoze ruSeni naplanovanych udalosti se provadi pomérné
velmi ziidka. '




Procesy

Proces je v podstaté posloupnost udalosti oddélenych prodlevami, které jsou
generovany samotnym procesem, popiipadé zavisi na okamzitém stavu modelu a
ostatnich procest. Pomémne primitivni graficky jazyk ¢asovych siti nemuize piimo
modelovat viechny sémanticky bohaté formy piikazd pro praci s procesy, které jsou
k dispozici v procesové orientovanych simulaénich jazycich. Pokusme se pfesto
naznacit, jak vyjadfit Casovou siti procesoveé orientované piikazy, resp. metody tfidy
Simulation jazyka Simula.

P.hold(x) je provedeni metody hold procesu P, ktera vygeneruje ¢asovou prodlevu
délky x vjeho Zivoté. Implementace ¢asovanym piechodem je evidentni — viz napf.
piechod Wait na obr. 2.

Activate P je nejjednodusdi forma piikazu, ktery aktivuje proces P. ReSeni je
naznaceno na obr. 4, kde provedeni piechodu Activare nastartuje proces, ktery je
tvofen pro jednoduchost pouze prechody ¢/ a (2. Pfitomnost znacky v mist€ Ready
znamena, 7e proces muze byt aktivovan. Sit’ na obr. 4 pouziva vSechny tii typy hran,
které lze v PetriSimu vytvofit. Tzv. testovaci hrana (testing arc), kreslena jako cara
bez Sipky nebo krouzku, testuje zda misto obsahuje dany pocet znacek. Pokud ano, a
pokud jsou splnény ostatni podminky provedeni pfechodu, pak je provedeni prechodu
zahdjeno bez vyjmuti znafek. Testovaci hrany na obr. 4 testuji, zda misto Active
obsahuje znacku. Pokud ano - viz deaktivaci procesu déle - piechody ¢/ a 12 realizuji
proces, prechod end ho uvede do pocétecniho stavu.
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Obr.4: Aktivace a ukon€eni procesu.

P.cancel(R) je provedeni metody cancel procesu P, kterd deaktivuje (pierusuje
provadéni) néjakého jiného procesu R. K pierudeni procesu je na obr. 4 pouzit pfechod
Cancel, ktery také uvede proces do potatedniho stavu. Vzhledem k nepferusitelnosti
provadéni piechodu se opét jedna o feSeni ¢aste¢né. Proces na obr. 4 lze ukon¢it pouze
po provedeni piechodi ¢/ nebo 2. Pfi pferuseni procesu je také nutné vyjmout znacky
zmist p/ resp. p2. K tomu jsou pouZity tzv. inhibiéni hrany (inhibitor arc) zakon&ené
krouzkem. Ty testuji, zda je misto prazdné. Pokud ano, pfechod miiZe byt proveden.
Prechod r/c¢ resp. 12¢ tak vyjme znatku z mista p/ resp. p2, pokud je misto Active
prazdné. V PetriSimu mohou byt viechny tii typy hran ndsobné. U inhibi¢nich hran to
Znamena, ze prechod mize byt proveden, pokud vstupni misto obsahuje méné znacek,




nez je nasobnost hrany. Jedna se tedy o negaci podminky testované normalni hranou,
ktera je ukoncena Sipkou.

1.3 Piivodni textové prostredi — [Al]

Piedchidce PetriSimu, nazvany pracovné PETSIM, byl naprogramovén v jazyce
Logos (Weinberger 1991), ktery je rozsifenim jazyka Logo. Logos byl vytvofen pro
vyuku objektové orientovaného programovani, prace s tfidami je proto velmi nazorna
a uzivatelsky orientovand. Nevyhodou je samoziejmé primitivnost hostitelského Loga
a pouze textova komunikace mezi uZivatelem a programem. Logos byl vybran proto,
ze v té dobé jsem nemél piistup k jinému objektovému jazyku. Po pfichodu Object
Pascalu v ramei Turbo Pascalu verze 5.5 jsem pak pouzival tento jazyk, PetriSim ve
dnesni verzi 4 je naprogramovan v Turbo Pascalu resp. Borland Pascalu 7.

Clanek [Al] nejdfive ukazuje jak reprezentovat znalost o sitich jako takovych,
mistech a pfechodech pomoci tfid jazyka Logos. Atributy a metody téchto t¥id jsou
uvedeny na str. 389-392. Nasleduje popis prostiedi pro praci s Petriho sitémi, Pomoci
mechanismu dédéni (inheritance) pak byly definovény tzv. barvené sité (Coloured
Petri Nf:ts)s — str. 394 a Casové sité — str. 395, se krerymi uz bylo mozné provadét
jednoduchou simulaci. Vyznam ¢élanku [Al] vidim v tom, Ze ukazuje vyuziti technik
objektové orientovaného programovani k vytvofeni a obohaceni jistého uZivatelského
prostiedi. Bylo to v dobé, kdy pouzivani téchto technik bylo s vyjimkou Simuly teprve
v zadatcich. _
Poznamenejme, Z¢ jazyk Logos mél jednu vlastnost, kterou klasické kompilované
objektové jazyky jako napi. Simula nebo Java nemaji — moZnost modifikovat
(individualizovat) instance tfid na trovni kodu. V klasickych objektovych jazycich
jsou instance modifikovany pouze hodnotami atributt, kod (metody) je pro vSechny
instance shodny. Moznost modifikovat kod instanci je velmi vyhodna pro simulaci.
Napfi. prechod ¢asové sit¢ v PETSIMu mél mimo jiné dvé metody aktivované pii
zahdjeni provedeni (XP) a pfi ukonceni provedeni (YP) piechodu — viz str. 395 dole.
Tyto metody pak bylo mozné definovat pro kazdy prechod zvlast podle potieby
simulaéniho modelu spolu s metodou DUR, ktera vracela prodlevu provedeni.
Vzhledem k textové komunikaci a dal§im omezenim pouzitého Loga nepfichdzelo
v uvahu pouziti PETSIMU k praktické simulaci. Byl pouZit pouze k vyuce Petriho siti.
Ptilohou ¢lanku [A1] je uzivatelsky manual, ktery ukazuje jednoduchost prace.

1.4 Metodika simulace ¢asovymi sitémi — [A2]

Clanek [A2] shrnuje zkuenosti ziskané pouzivanim PetriSimu verze 2. Na piikladu
sit¢ hromadné obsluhy tvofené tfemi uzly — viz obr. 1 je ukazan cely postup. Sit
hromadné obsluhy je nejdiive vyjadiena Gasovou siti — viz. obr. 2, ke které je pak
doplnén kod v Pascalu, jehoZz podstatna &ast je zafazena v piiloze. Jsou vyjmenovany
procedury, které dopliiuje uzivatel (str. 62) a standardni procedury PetriSimu (str. 63),
které podporuji uzivatelské programovani. Konkrétné se jedna o generovani prodlevy

- Poznamenejme, 7e se zde jedna o piivodni jednoduché barvené sité definované v knize
(Peterson 1981). Pojmem barvené sité se dnes oznacuji sité vytvoifené na Aarhuzské
Université v Dansku, které jsou sitémi vysoké urovné, kde znacky mohou byt libovolné
-da}ové struktury, moznost provedeni piechodu je testovana predikaty a samotné provedeni
Muze zahrnovat nejriiznéjsi operace na datech. Viz stranku http://www.daimi.aau.dk/CPnets/.




pii realizaci pfechodu, coz je zékladni ndstroj prace s ¢asem, ziskani oznaceni mista a
¢asu modelu a moznost modifikace oznaéeni. Posledni dvé procedury zobrazuji sit’ a
ukonéuji  experiment. Nasleduje vysvétleni, jak pracovat se statisticky
monitorovanymi objekty, s ndhodnymi ¢&isly a suzivatelskymi daty, napojenymi na
model. Ta totiz byla nutnd k ziskani casovych 1udaji jako je napi. primérna doba
¢ekani ve fronté. Je to ddno tim, Ze v Casové siti nejsou znacky navzéjem odliseny.
Zname podty znadek, ale ne doby jejich setrvani v misté = fronté. ReSenim bylo
vytvofit frontu (seznam) a pii kazdém umisténi znac¢ky do mista vytvofit o této znacce
zdznam s ¢asem prichodu a tento zdznam zaradit do fronty. Prace s uzivatelskymi daty
je tak fizena a synchronizovéna udélostmi v ¢asové siti. Soucasti PetriSimu byl proto
unit Pascalu pro préaci se seznamy velmi podobny systémové tiidé Simset jazyka
Simula — byl také popsan v ¢lanku [11]. PfestoZze prace s frontami tim byla velmi
zjednodu$ena, prace s nimi nebyla trividlni a rovnéZ bylo nutné se nejdiive seznamit
s unitem Simset. Jeho pouZivani bylo velmi jednoduché pouze pro toho, kdo znal
stejné nazvanou tiidu Simuly. Proto v dnesni verzi PetriSimu uZ je automaticky
poskytovéna statistika o dob€ setrvani znacek v mistech, uzivatel programuje pouze
meéieni ¢asu setrvani v celé siti, nebo jejich &astech. Nevyhodou prace s PertiSimem
verze 2 bylo oddéleni uzivatelského kodu od sité. Tento koéd byl umistén
v samostatném unitu psaném v prostiedi Turbo Pascalu. Dalsi vyvoj byl proto
orientovan na vytvoreni interaktivniho prostiedi, kde cely model véetné uzivatelského
kodu je vytvoren editorem PetriSimu.

1.5 Grafické prostiedi PetriSimu — [A3]

Programovani simulaénich modelt v PetriSimu lze oznacit jako programovani fizené
udalostmi (Event Driven Programming), coz plati pro vét§inu aplikaci pod operaénimi
systémy Windows. Znamena to, Ze programator piSe seky kodu, které definuji co se
ma stat v piipadé urité udalosti jako je napt. stisknuti tlacitka mySi. V pripadé
PetriSimu jsou témito udédlostmi zahdjeni a ukonéeni provedeni prechodu. UzZivatelsky
kéd je tak tvofen fadou navzajem témeéi nezavislych tsekd (code snippets), z nichz
prakticky vsechny jsou tvofeny sekvenéni posloupnosti pouze nékolika piikazq.
Logicky celek, kterym je simulaéni model, je z téchto usekil vytvofen ¢asovou siti,
kterda tak vytvaii slozité vypocetni struktury, které jsou pii pouziti klasickych
simulaénich jazykl naprogramovany pomoci specidlnich k tomu uréenych piikazi.
Programovani je proto po vytvofeni ¢asové sité uz relativné snadné a pro vyuku je
podstatnd ta skuteénost, Ze se uzivatel nemusi ucit zadné specialni piikazy.
Predpokladem je pouze programovani v Turbo Pascalu na bézné rovni. Clanek [A3]
popisuje implementaci grafického uzivatelského prostiedi (GUI) PetriSimu. Zejména
Jje popisovana technika, jak jsou jednotlivé useky kodu sestaveny do programu, jehoZ
piekladem vznika proveditelny program petrisim.exe, ktery obsahuje celé prostiedi a
jeden uzivatelsky simulaéni model. Samotné tiseky kodu jsou psany editorem, ktery je
aktivovan z PetriSimu. Viz obr, 2, ktery je kopii obrazovky tésné pfed spusténim
editoru. Editor si vybird uZivatel sam, standardné je pouzivan editor edit.com, ktery je
soucasti Windows. Obr. 2 je modelem paketové sité tvofené ¢tyfmi vstupnimi linkami,
Vhitinim zpracovanim s omezenou kapacitou paméti a péti vystupnimi linkami.
Samotny model a jeho vytvofeni je popsano v ¢lanku [35].




1.6 Pouziti mechanismu dédéni — [A4]

PetriSim byl postupne budovén rozsifovanim modelovacich schopnosti ¢asovych siti a
piidavanim podptrnych prostiedki pro usnadnéni psani uZivatelskych modela. Clanek
[A4] ukazuje, jak lze pro tento ucel svyhodou vyuzit mechanismus d&déni
(inheritance), ktery je zékladni technikou objektové orientovaného programovani.
Diagramy na str. 176 naznacuji, jak byly s minimédlnimi zasahy do stavajiciho kodu
implementovany inhibiéni hrany a rozSifeni casovych siti scilem simulovat sité
hromadné obsluhy’. Vé&tdinou se jedna pouze o kresleni mist a prechod riznymi
nazornymi ikonami — viz str. 177. Pouze v jednom ptipadé byl definovan novy typ
pfechodu, ktery se lisi funkei. Jde o vétveni pracovné nazvané “branching® — viz
ikony na str. 178. Tento pfechod pracuje tak, Ze po ukonéeni provedeni piechodu je
znadka umisténa pouze do jednoho vystupniho mista. Toto misto je vybrano
uzivatelskym kodem, pokud ne, je vybrano ndhodné, vSechna vystupni mista se
stejnou  pravdépodobnosti.  Pouziti téchto pfechodd k ndhodnému  nebo
deterministickému vétveni po ukonéeni obsluhy je evidentni. Pfed zavedenim té€chto
prechodi bylo nutné programovat vétveni pomoci nebezpetné modifikace oznaceni
vystupnich mist. V posledni kapitole je popsan simula¢ni model banky, jejiz ¢innost
byla vyjadfena siti hromadné obsluhy se tfemi frontami, z nichZ dvé maji omezenou
kapacitu, ¢ili maze dojit ke ztrat€ zakazniki. Ve dvou piipadech nasleduje po obsluze
nahodné vétveni — viz obr. 1 ¢lanku [A4]. Na obr. 5 je ukézano pouZiti zobeenénych
testovacich hran, které v dobé napsani ¢lanku [A4] jesté nebyly k dispozici.
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Obr.5: Model banky ¢asovou siti.

. ’ Poznamenejme, 7e myslenka modelovat sité hromadné obsluhy pomoci Petriho siti neni
nova. Pro tento acel byly na Université v Dortmundu vytvofeny specidlni sité na vysoké
Urovni nazvané Queueing Petri Nets, kde jednotliva mista mohou byt obsluznymi uzly
s frontou a vicekanalovou obsluhou. Obsluha j je tvorena smési exponencialnich rozdéleni, coz
'-_‘mOZ_DUJe kvantitativni analyzu pomoci aparatu Markovskych procesii. Tyto sité nejsou pfimo
urceny k simulaci. Viz strdnku http:/s4-www. informatik.uni-dortmund.de/QPNY.




Napt. fronta reprezentovana mistem Quewue! ma kapacitu 6 zakaznikt. Inhibi¢ni hrana
umoziuje provedeni prechodu fnacce (zaiazeni do fronty) pokud je ve fronté zdkaznik
méné. Naopak testovaci hrana umozZiuje provedeni piechodu New lost (ztrata
zdkaznika) pokud je ve fronté jiz 6 zékaznikt. Bez testovacich hran bylo nutné ke
kazdé fronté doplnit misto, jehoz pocatecni znaceni je kapacitou fronty — viz obr. 1
¢lanku [A4]. Pocet ztracenych zékaznik je rovny poctu provedeni prechodu
New lost, ktery 1ze snadno ziskat po ukonéeni simulace.

Model banky neni slozity, ale také neni trivialni. Piesto veskery kod, ktery bylo nutno
napsat (mimo vyhodnoceni simulace), je tvofen asi 13 fadky, jak je uvedeno v pfiloze
2 &lanku [A4], kde je také vidét programovani vétviciho prechodu nastavenim jeho
atributu Branch. Ptiloha 3 shrnuje vysledky dvou simula¢nich experimentl, jejichz
cilem bylo nalézt optimalni pocet pracovist. Numerické parametry a dalsi detaily jsou
uvedeny v ¢lanku, experiment délky 10000 minut trva asi 3 sekundy (PII, 300MHz).
Popsany mechanismus dédéni je otevieny, z diagramt je zfejmé, Ze PetriSim vzdy
pracuje s rozhranim tiidy User. Pied tuto tfidu lze zafadit libovolnou posloupnost
nadtiid, které dale obohacuji vlastnosti ¢asovych siti. Z uzivatelského hlediska se
jedna o specializaci v globalnim smyslu pro vSechna mista a vSechny piechody.
Lokalni specializace je pak dosaZzeno pomoci usekii kodu pro jednotlivé piechody.
Jako ukazka tohoto postupu byly vytvoteny sité, kde mista jsou zobrazena jako text
s rliznou barvou podle toho, zda misto je nebo neni prazdné. Viz uvitani na domovské
strance PetriSimu na Artp:/staff. um.edu.mi/jskl 1/petrisim/index. himl.

1.7 Simulace siti hromadné obsluhy — [AS5]

Sité hromadné obsluhy jsou velmi ¢asto simulovany, protoZe analytické metody
vétsinou bud’to neexistuji, nebo jsou zalozeny na nesplnénych predpokladech. Clanek
[A5] se proto snazi ukazat, jak lze tyto sité simulovat pomoci ¢asovych siti PetriSimu.
Clanek ukazuje, jak lze vyjadiit pomoci ¢asovych siti jednotlivé uzly riiznych typd a
jak je propojovat do sité. Nejdiive je simulovan systém G/G/1 — viz obr. 1, kde je
vidét Ze k jeho vytvofeni sta¢i doslova 3 fadky kédu. Dva na generovani prodlevy
mezi piichody zakaznikil a trvani obsluhy, tfeti je aktivaci procedury ktera vypisuje
standardni vysledky simulace systému G/G/1 do zadaného souboru. Uzivatel musi
také zadat jméno mista a jméno prechodu, protoze ze struktury sit¢ nelze odvodit,
ktera dvojice misto-prechod tento systém tvori. Zobecnéni na vicekandlovou obsluhu
zafazenim vice obsluh = pfechodl je evidentni. Nésleduje model systému G/G/1/K
s omezenou kapacitou tak, jak pouZzit vySe na obr, 5. Obr. 2 ¢ldnku ukazuje standarni
vystup PetriSimu. Pro kazdé misto je vypséana statistika hodnoty oznaceni, statistika
doby setrvani znacek v misté a celkovy pocet pfidanych znacéek. Pro kazdy pfeched je
vypsano jeho vyuziti (podil doby kdy probiha provedeni k celkové délce simulace),
statistika trvani provedeni a pocet provedeni. ‘

Ponékud slozitéjsi je modelovani systéml s omezenou populaci zdkaznikill, kde
intervaly mezi pfichody zavisi nepifimo na poctu zakaznikii mimo obsluhu. V prvé
fadé je nutné tuto zavislost definovat. Model na obr. 3 je zaloZen na piedpokladu
teoretickych modeli omezené populace. Pro kazdého zékaznika je definovana Cetnost
Prichodi 4 (napt. pro stroje je obvyklé udavat priimérnou dobu mezi poruchami 1/2).
Je-li M celkovy pocet zakaznikl a n okamzity stav systému, ¢etnost piichodi je (M —
mA. Obr. 3 modeluje systém s 10 zakazniky, neomezenou kapacitou a dvéma
9bslui113?mi uzly. P¥ichod zakaznikd modeluje prechod Arrival delay, jehoz prodleva
J€ Vv tomto pifpadé rozdélena exponencidlng, coz na rozdil od teoretickych modeli




samoziejmé neni podminkou. Na obr. 3 je vidét, jak je stfedni doba rozdéleni
odvozena od oznageni mista Population, které obsahuje zdkazniky mimo obsluhu.
Nasledujici odstavec se zabyva modelovanim systémi s pfichody a/nebo obsluhou po
davkach (Bulk Input, Bulk Service). Situace je trivialni v pfipadé€, kdy velikost davek
je konstantni a obsluha vZdy ¢eka na celou davku. Davky lze za téchto pfedpokladi
modelovat nasobnymi hranami. V pfipadé nahodnych davek nebo v ptipadé, kdy je
mozna obsluha ddvek mensich, je nutné modifikovat oznadeni programem, coZ je
vzdy nebezpeéné, protoze se vlastné jednd o poruSeni mechanismu Petriho sité.
Piichod nahodné davky je ukdzan na str. 406.

PetriSim neumoziuje pfifadit znackam prioritu, nebo je délit do tiid. Na obr. 4 je
model obsluhy se dvéma prioritami zakaznikd. Ve skuteénosti jedna fronta je
modelovdna dvéma frontami pro dvé rGzné priority (coz lze roz$ifit na libovolny
podet). Obsluhy jsou také dvé, ale pomoci semaforu 2 _Off je zajisténo, Ze vidy
probihd pouze jedna. Inhibiéni hrana zajisti, Ze spodni obsluha pro niZsi prioritu miize
zad¢it pouze je-li horni fronta prazdna. Vyjmutim inhibi¢ni hrany by se jednalo o '
obsluhu zdkaznikt dvou riiznych tfid stejné priority (ne zcela piesné, protoze vybér
obsluh by byl nahodny).

Vytvoteni sité propojenim vySe uvedenych zdkladnich uzli je evidentni, ndhodné
vétveni je realizovéno jiz diive popsanym vétvicim pfechodem. Na obr. 5 je
jednoduchd sit’ se dvéma frontami, kterd je pro porovnani na obr. 6 modelovina
pomoci Extendu. Stejna sit’ byla také modelovdna Arenou a simuldtorem siti
v JavaScriptu popsaném v pfisti kapitole. V tabulce je porovnana rychlost téchto Ctyf
simulétort.

PetriSim se osvédéil jako néstroj pro praci s Petriho a ¢asovymi sitémi pro potfeby
vyuky a vyzkumu. Je k dispozici na http://staff um.edu.mt/jskl1/petrisim/index. html.

2 JSSim

JSSim (JavaScript Simulator), jehoZ jsem autorem, je souborem deklaraci v jazyce
JavaScript, které tvoii prostfedi pro diskrétni simulaci orientovanou na udalosti.
JSSim vznikl postupnym zobecnénim funkci pouzitych pii vytvareni simula¢nich
modelti zabudovanych do dokumenti napsanych v jazyce HTML. Tato kapitola je
avodem a komentafem k pracem zarazenym v piiloze B.

2.1 Motivace

World Wide Web sité¢ Internet (dale web) je soubor navzajem provazanych
dokumentii zvanych webovské stranky, pro jejichZz vytvafeni a zobrazovani plati
jednotna pravidla. Stranky jsou psany vétsinou v jazyce HTML (HyperText Markup
Language) (Darnell 1998) a pro piistup k nim plati pravidla reprezentovand
protokolem HTTP (HyperText Transfer Protocol). Potieba fungujicich vazeb a
!(Ornunikace si tak vynutila normalizaci v celosvétovém méfitku, coZ nebylo difve u
1zolovanych poéitaéti z konkurenénich diivodii mozné. Web je tak platformou, kde
urCitd webovska stranka by méla byt zobrazena stejnym zplGsobem riznymi
prohliiecimi programy na riznych poéitaich a pod rliznymi operanimy systémy.
Skutegnost se tomuto idealu blizi. Rozdily v zobrazeni dokumentli riiznymi prohliZeci

Nejsou velké a jsou zpisobeny zejména velmi rychlym vyvojem, ktery predbiha
Normalizaci.




Webovské stranky nejsou pouze pasivni texty a grafika. Stranky mohou obsahovat
kod s cilem umoznit jejich dynamické chovéani a umoznit jejich vyuziti ke sbéru dat,
coz zahrnuje mimo jiné verifikaci dat na strané uzivatele. Do$lo tak poprvé v historii
ke skute¢né normalizaci programovacich jazyk'®, znichZz nejdulezit&jsi je Java
(Eckel 1998) a JavaScript (Flanagan 1998). Pfes wnéjsi- podobu danou syntaxi
odvozenou z jazyka C se jedna o dva rizné jazyky. Oba umozZnuji vytvareni libovolné
rozsahlych- programu, oba obsahuji vSechny prostiedky bézné u vysSich
proglamovamch jazykl. Z jistého pohledu jsou vSak zcela odlisné. Java je
kompllovany , objektové orientovany jazyk s pfisnou kontrolou typu proménnych.
JavaSecript je naopak interpretovany jazyk, jehoZ proménné nejsou deklarovany a lze
jim kdykoliv pfifadit hodnoty libovolného typu véetné¢ funkci. Mezi Javou a
JavaScriptem existuje celd fada rozdilt, které jsou pfehledné shrnuty v on-line
dokumentaci'”. Z dalsfho popisu bude ziejmé, Ze podstatny je rozdil ve vazbé na
HTML kéd, Lte1y definuje hostitelskou stranku. Java ve strance existuje ve formé tzv.
appletu, ktery lze ze stranky aktivovat, ale ddle je na ni nezavisly. Napf. vSechny
ovladaci prvky si applet vytvari ve zvlastnim okné. Naproti tomu JavaSecript je do
HTML kodu integrovan. Tzv. znacky (tag) jazyka HTML mohou obsahovat tseky
v JavaScriptu, kterymi programétor definuje co se ma stat pii riiznych udalostech, jako
je napf. pohyb mysi nad textem, stisknuti tlacitka, apod. K préci s JavaScriptem neni
nutné mit zadné piekladace, protoze kod je pifimo interpretovan prohlizeCem.
Programy lze psat libovolnym textovym editorem, editory jazyka HTML standardné
umoziuji psani piikazi v JavaScriptu. Jsou rovnéz zdarma k dispozici ladici programy
pro nejéastéji uzivané prohlizece (Internet Explorer, Netscape Communicator).

Tyto skutegnosti jsou diivodem, Ze podle nékterych autort je 80% aplikaci na webu
psano v JavaSecriptu - (Eckel 1998). JavaScript byl pivodné uren zejména ke
zpracovani dat na strané uZivatele (client side) pred jejich odesldnim do serveru, ve
kterém je stranka uloZena. Toto zpracovani oviem mize byt libovoln€ sloZité, jsou k
dispozici viechny standardni prostfedky k numerickym a nenumerickym operacim.
HTML, ve kterém je JavaSecript integrovan, fesi problém rozhrani mezi programem a
uzivatelem. Na rozdil od Java appletu se vSechny ovladaci prvky snadno a rychle
zapisi piimo v HTML, coz plati pro vstup dat, ovladani programu a vystup vysledku.
Tyto HTML objekty lze pak pfimo pouzivat v JavaScriptu v podstaté jako promeénné.
Nabizi se tak moZnost implementovat v JavaScriptu + HTML aplikace ur€en€ k feSeni
rliznych problémil véetné implementace jednoduchych a stfedné slozitych simulagnich
modeld. Samoziejmé takto nelze realizovat rozsahlé simulaéni studie.

K ovéfeni tohoto piedpokladu jsem napsal v JavaScriptu nékolik simulacnich modelu
systémi hromadné obsluhy, které byly zpfistupnény na webu. Vysledky byly znaéné
povzbudivé ze dvou diivodii. Modely piedné vzbudily zna¢nou pozornost, dostal jsem
fadu reakci z celého svéta. Dale se pak ukézalo, Ze interpretacni programy dnesnich
prohlize&t jsou dostateéné rychlé k tomu, aby bylo mozné uspéSné simulovat i
netrivialni stfedné slozité modely. Problémem neni ani kapacita vnitini paméti, ktera

~ je dnes obrovska a stéle rychle roste. JavaScript ma stejné jako Java garbage collector,

neni proto nutné se piili§ starat o alokaci paméti. Jedinym problémem je zdkaz

" Snaha o normalizaci programovacich jazyki existovala vzdy, mkdyp viak nebylo skutecne
dosazeno. Nejblize byla pravdépodobné Simula, ovSem za cenu “zmrazeni” v pocatcich
Vy"o.le coz je jednim z dlivod(i malého rozsireni tohoto jazyka.

Pl‘Oduktem kompilace Javy je tzv. “byte code™, ktery je pii provadéni programu vétSinou
{nte"Pl'etovan Z pohledu uzivatele je viak Java l\ompllovanym jazykem.

Viz hip. //developer.netscape.com/docs/manuals/js/client/jsguide/index. htm.




piistupu na disk. Casteénym feSenim je pouZiti tzv. cookies, které viak maji malou
kapacitu a ne kazdy uZivatel je povoluje vytvaret. Simula¢ni modely na webu jsou
dostupné doslova kazdému, kdo je pfipojen na Internet. Lze je pouzit (a bylo jich
pouzito) k feSeni praktickych problémi. Jsou také velmi vyhodné pro potieby vyuky.
Obecné jsem piesvédcen, ze v fadé aplikaci je zbyteéné zatéZovéan server. Typicky
poéita¢ na strané uzivatele (client) je dnes vybaven velmi rychlym procesorem a
paméti velké kapacity. Lze mu proto svéfit ve$keré zpracovani dat, které nevyZaduje
Sasty pristup do centralni databaze nebo ¢astou komunikaci s jinymi klienty. Aplikace
popisované v této kapitole se fidi touto filosofii a 1ze je proto z tohoto pohledu oznacit
jako aplikace na strané uzivatele (client side applications). Déle komentované prace
byly vybrany tak, aby bylo zfejmé, jaké problémy bylo nutno fe$it s cilem vytvorit
objektové orientovany ndstroj umoznujici relativné snadné psani simula¢nich modeld.
Pfi psani modeld postupné vznikl soubor deklaraci, které jsou vyuzitelné obecné. Lze
je proto povazovat za nastroj k diskrétni simulaci v JavaScrlptu ktery jsem pracovné
nazval JSSim. V Javé existuje simula¢nich knihoven nékolik'?, pro JavaScript jiny
simulaéni nastroj neznam.

2.2 Objektové orientované programovani v JavaScriptu — [B1]

Jazyk JavaScript je definovan v jiz zminéné normé ECMA 262. Existuje ve dvou
formach. Tzv. Server Side JavaScript je kompilovan do formy zvané bytecode a
interpretovan serverem pfed odesldnim stranky. Client Side JavaScript je
interpretovan prohlize¢i na strané uZivatele pii zobrazeni stranky a pozdgji pii akeich
uzivatele, které JavaScript aktivuji. Pro jakékoliv operace provadéné na strané
uzivatele je proto nutné pouzit Client Side JavaScript, na ktery se déale omezim.
JavaScript obsahuje prostiedky, které jsou dnes standardni ve vSech vyssich jazycich
(strukturované prikazy, funkce, zdkladni datové typy véetné strukturovanych). Neni to
viak ve své zakladni podobé objektové orientovany jazyk v klasickém slova smyslu
zalozeny na tiidach a jejich instancich. Jeho autofi tvrdi, Ze je to objektovy jazyk
zaloZzeny na tzv. prototypech (prototype-based language). Detailni popis tohoto
objektového modelu zde neuvadim, protoZe je popsan v ¢lanku [B1] — viz kap. 2,3 a
4. Po bliz§im seznameni bylo zfejmé, Ze objektovy model JavaScriptu lze snadno
pouzivat tak, Ze alesponi z hlediska uZivatele se jedna o klasicky model orientovany na
tfidy (class-based). Kap. 5 ¢lanku [B1] ukazuje, jak lze v JavaScriptu vyjadiit tridy a
jejich vlastnosti a metody' a jak lze pomoci konstruktérii (constructor) vytvafet
instance a jejich vlastnosti a metody. Jazyk JavaScript m4 jednu zajimavou vlastnost,
kterou je moznost modifikace instanci na Grovni kodu — viz kap. 1.3. Je to déno tim,
Ze v JavaScriptu je text funkce povaZovan za hodnotu na kterou lze ndsledné pouZit
operator volani “( ) — viz vytvofeni metody shiff na str. 37. Instance vytvoiené podle
ur¢itého vzoru tak mohou mit rizné metody stejného jména. Modifikace muze
pokracovat tak, Ze nékterym instancim lze pfidat vlastnosti a metody, které jiné

Napr JavaSim, vytvoieny na University of Newcastle upon Tyne (http:/javasim.ncl.ac.uk/)
Je souborem baligki (packages) v Javé ktery umoziiuje procesové orientovanou diskrétni
simulaci. Jiny néstroj pro procesovou simulaci v Javé je simjava vytvotena na University of
Edlnburgh (http:/f'www.des.ed.ac.uk/home/hase/simjaval).

Vlastnosti (properties) a metody tiid existuji pro tfidu jako takovou, ne pro jednotlivé
instance, Nékterd objektové orientované jazyky, jako napf. Simula, vlastnosti a metody tiid
Nemaji. Viechny objektové orientované jazyky umoziuji definovat vlastnosti a metody
Histanci, coz je prvni zakladni princip objektového programovéni (encapsulation).




instance nemaji. Samoziejme je pak otazkou zda, lze u takovych instanci je§té hovofit
o jejich tiidach. Povazuji za vyhodny spiSe opa¢ny postup: umyslné nevyuzivat
vSechny moznosti, které JavaScript s neexistujici kontrolou typui nabizi, a
programovat tak v podstat¢ stejné, jako v klasickych objektovych jazycich
orientovanych na tfidy. Tento pfistup znamena pouzivat pouze metody ulozené
v prototypech - viz kod na str. 38, které jsou shodné pro vSechny instance vytvofené
danym konstruktérem. Funkce pouzitd jako konstruktér, kterd vytvaii hodnotové
vlastnosti instanci, tak nahrazuje deklaraci tfidy v kompilovanych jazycich.

Druhym zékladnim principem objektového programovéni je mechanismus dédéni
(inheritance) vyjadieny stromovou strukturou, ve které ma kazda t¥ida (s vyjimkou
nejvyssi) svou nadtifdu'® (superclass) a sama miize byt nadtiidou libovolného poétu
podtiid (subclass)w. K implementaci dédéni nabizi JavaScript feSeni zaloZené na
nahrazeni prototypu instanci nadtfidy — viz str. 39. Toto feSeni povazuji za nevyhodné
ze dvou divodi. Prototyp ma vtomto piipadé také hodnotové vlastnosti instance
nadtfidy, které nelze instancemi modifikovat a které jsou v pfipadé vytvoreni
vlastnosti stejného jména konstruktérem podtiidy neviditelné. Vysledkem je tedy
pouze zbytecné alokovana pamét’, coz neni podstatné. Druhy diavod je zévazny.
Prototypy maji vlastnost nazvanou constructor, kterou lze testovat typ instanci. Pokud
piepiSeme standardni prototyp odkazem na instanci nadtfidy, dojde samoziejmé
k poruSeni hodnoty vlastnosti constructor. Alternativou je explicitni programované
dédéni zaloZené na kopirovani metod z prototypu nadtiidy, po kterém muze
nasledovat vytvoreni dodatecnych metod podtiidy. Na str. 40 je funkce inherit, ktera
kopiruje metody (ne hodnotové vlastnosti) a piiklad jejiho pouziti. K dé&déni
hodnotovych vlastnosti, které jsou vytvafeny konstruktérem, lze pouzit techniku
ukdzanou na str. 39. Samotné vytvofeni vlastnosti provede zvlastni funkce, kterou
vola konstruktér dané tfidy a obdobné funkce podtiid, v éemz lze pokracovat na
libovolném poctu urovni. Jinak by totiz bylo nutné vytvoreni vlastnosti v podtiidé
zopakovat, coZ pfinasi nebezpeéi inkonsistence. Takto lze ptidat vlastnost nadtiidy
s tim, Ze zména se automaticky promitne do vSech podtfid stejné jako u klasickych
objektovych jazykl. Obé techniky (dédéni metod a vlastnosti) umoznuji vicenasobné
dédéni (multiple inheritance). V piiloze ¢lanku [B1] je piiklad vytvofeni tfidy pro
FIFO fronty, ktera dédi z obecné fronty GenQueue, ktera implementuje zakladni
vlastnosti viech front, a z fronty StatQueue, kterd implementuje statistické sledovani
délky. Vlastni metody pak implementuji operace dané FIFO mechanismem"’.

Ttetim zakladnim principem objektového programovéni je tzv. polymorphismus, ktery
Vv podstaté znamend moznost modifikace chovani zkompilovaného kodu v zavislosti
na konkrétnim typu vytvorenych instanci. Napf. aktivace metody queue. getfirst() vrati
prvni prvek fronty je-li v proménné guewe instance fronty typu FIFO, resp. posledni,
je-li instance typu LIFO. Tohoto efektu je u objektovych jazykd orientovanych na
tiidy dosazeno pomoci slozitého mechanismu nazvaného “late binding“'®.
V' JavaSeriptu tento problém neexistuje. Interpretovany JavaScript bez kontroly typli
Je polymorficky z principu. x.m() lze provést kdykoliv za predpokladu, Ze proménna x
odkazuje na objekt, ktery ma metodu m.

:: Umoziiuje-li jazyk vicenasobné dédéni (multiple inheritance) pak miize byt nadtiid vice.

_ Poznamenejme, 7ze ne vsechny objektové jazyky pouzivaji pojem “class®. Napi. Object
Eascal nebo simulagni jazyk Modsim pouzivaji nazev “object™. Princip je viak shodny.
 Vpriloze ¢lanku [B1] je pavodni implementace front, kde hostitelskou datovou strukturou
: .wyip pole. ISSim ma nyni fronty implementované klasicky retézenym seznamem objekti.
Jednd se totiz v podstaté o poruSeni principu typovanych proménnych.




Clanek [B1] koné&i popisem techniky, kterd nema obdobu v jinych objektovych
jazycich. Programované dédéni totiz umoziuje kopirovat pouze n€které vybrané
metody a vytvaret tak “podtiidy” které jsou zjednodusenim “nadtfidy”. Na str. 41 je
zobecnéna funkce inherit, kterd kopiruje pouze vyjmenované metody. Této techniky
jsem pouzil pti definici tfidy, jejiz instance reprezentuji diskrétni ndhodné proménné.
Tato tfida je zjednodusenim tridy pro generovani obecnych ndhodnych proménnych,
ktera jiz byla dfive k dispozici. Samoziejmé je nutné zaruCit, aby vybrané metody
byly sobéstacné. Tohoto efektu lze u hodnotovych vlastnosti dosdhnout tak, Ze
vytvoieni vlastnosti rozdélime do né&kolika funkei a pfi zjednodusSeni zafadime pouze
ty, které jsou potiebné. Vhodnym ndzvem pro tuto techniku by mohlo byt
zjednoduseni (simplification). Jedna se vlastné o opak dédéni, pii kterém nadtiidu
obohacujeme. Obohaceni v jistém sméru v8ak mulze nasledovat i po poéateénim
zjednoduSeni.

2.3 Simulator siti hromadné obsluhy — [B2]

Existuje pouze jediny zplisob, jak ovéfit funkénost piimého zabudovani simula¢niho
modelu do webovské stranky. Napsal jsem proto nékolik modell, které jsou
k dispozici na http://staff um.edu.mt/jskil/simweb/. Jedna se o tii modely systému
s jednou frontou a obecny simulator siti. Prvni je model systému M/M/1, ktery je
uréen k ovéfeni teoretického modelu, jehoZ uUplné odvozeni je zahrnuto. Dalsi dva
modely pak umoziiuji simulovat v podstaté libovolné systémy G/G/c s jednou frontou,
kterdA miize mit omezenou kapacitu, populace mizZe byt také omezend, piichod a
obsluha mohou byt po davkach. Intervaly mezi pfichody a trvani obsluh mohou mit
obecné rozdéleni dané tabulkou distribucéni funkce. Prace s témito modely je velmi
rychla a pohodlnd, coz mi potvrdila fada jejich uzivatelt. Nékteré podnéty jsem také
pouzil k vylepSeni a roz$ifeni modeld. Dale jsem se proto zaméfil na model sité, jehoz
také ze znamych divodi mnohem atraktivngj$i pro feSeni praktickych problémd.
Zakladni myslenky a vysledky jsou shrnuty ve ¢lanku [B2].
Po tivodu s motivaci a predpoklady pouziti modelu nasleduje nastin feSeni. JavaScript
piimo nepodporuje nakresleni sité mysi tak, jak to umozinuji jiz zminéné interaktivni
simulaéni prostiedky jako je Extend nebo Arena. Popis sité je proto textovy.
Nepovazuji to za podstatné omezeni, zejména pokud se jedna o sit, kde se zakaznik
po obsluze premist'uje ndhodné do vice moznych uzlt. Pokud je takova sit’ rozsahla,
diagram se brzy stane nepfehlednym a v podstaté zbyte¢nym. Ponechal jsem moZnost
zobrazit diagram, po stisknuti tlacitka se zadd umisténi souboru v pocita¢i uZivatele.
Modelovan sit’ je tvoifena dvéma typy uzlil: generdtory zakazniki a obsluznymi
. stanicemi, obou mfiZe byt v modelu prakticky neomezeny pocet. Protoze kazdy uzel je
reprezentovan fadou parametri a mnoha vysledky po ukonceni simulace, je vidy
zobrazen jeden generator a jedna obsluzna stanice. Piepinani je pohodIné pomoci
Vybéru (znagka SELECT), ktery po otevieni zobrazi &isla existujicich generétorii a
Stanic, jejichz poéty lze priibézné ménit. Vzdy jsou také zobrazeny vysledky, které se
~ Vztahuji k celé siti, jako je napi. celkovy pocet ztracenych zékaznikd nebo primérna
doba setrvani v siti,
i Dvéma typim sitovych uzll odpovida deklarace dvou tiid, které jsou popsany v kap.
4, deklarace generatoru je zafazena v pifloze 1. Generdtor je zaddn nahodnym
;fﬂzdélem'm intervald mezi piichody zdkaznik( a jejich ndhodnym smérovanim, které
"iJ{ﬁ.modelované nahodnym ¢islem cilové obsluzné stanice. Obsluzna stanice je zadana




kapacitou a organizaci fronty (FIFO nebo LIFO), poétem shodnych obsluznych
kanalli, ndhodnym rozdélenim trvani obsluhy a stejné jako generator ndhodnym
smérovanim. Pro odchod zakaznika ze sité je rezervovano Cislo cilové stanice 0. Pro
generatory a stanice poskytuje model vysledky ukézané na obr. 6 a obr. 7 pro sit’
M/M/1 vytvotenou automaticky pfi otevieni modelu: jeden generdtor, jedna stanice,
intervaly i obsluha maji stfedni hodnotu 1. Délka experimentu byla 10000 ¢asovych

jednotek, jejichZ interpretace je dana uZivatelem. Tlacitka Note zobrazuji pfesné
definice vysledkt (v tzv. “alert™ okné prohliZece).

Generator Results

[ Resut | The value "~ [Explanation '
Number ofarivals o5z | MNote]
|Average amivatinterval 1 0254534081113161 | Note|
IMisiroum arival nterval [0.00017667726400768377 | Note
[Masimum arrival interval ([5.751852646542984 Iote
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Obr.6: Vysledky simulace generatoru.

Po popisu tfid sit'ovych objektl nasleduje struény popis fidiciho programu, kterému je
vénovana piisti kapitola. Nasleduje piiklad simulace jednoduché sité, kterd je podobna
modelu banky modelované Petriho siti v élanku [A4]. Doby obsluh v3ak byly zadané
tabulkami distribuénich funkei — viz piilohu 3. Jsou porovnany doby vypoétu pro
rlizné prohlizee a rtzné délky experimentu na specifikovaném pocitaci s jedinou
aktivni ulohou. Je ziejmé, Ze sité stiedni velikosti lze simulovat v rozumném case
desitek sekund nebo né¢kolika minut.

Simulator umozhuje praci se sitémi prakticky neomezené velikosti a libovolné
topologie. Uzivatel nejdiive zadd podty generatorli a obsluznych stanic, které pak
postupné zobrazuje a zadava jejich parametry. Jednotliva nahodna rozd€lent, cel€ uzly
a celou sit’ 1ze ulozit do tzv. cookies. To je velmi vyhodné, pokud se v siti vyskytuje
vice shodnych nebo podobnych uzli nebo rozdéleni. Podminkou oviem je, aby
uzivatel cookies povolil v nastaveni prohlizeée. Problémem je také omezend kapacita
cookies, ktera neumoziuje ukladani rozsahlych siti. Model proto obsahuje
jednoduchou spravu cookies — jejich zobrazeni a vymazani z paméti.




Server Results
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Obr.6: Vysledky simulace obsluhy.
2.4 Ridici program a podpirné prostiedky — [B3]

Rychlost simulace zavisi do znaéné miry na rychlosti fidiciho programu (v anglické
literatute nazyvaného Simulation Engine), ktery udrzuje seznam zaznami udalosti
Sefazeny podle éasu vyskytu. Tento program plni tii zdkladni funkce: zafazeni
Zdznamu na spravné misto pii planovani udalosti, opakované vybirani zdznamu
Snejmensi hodnotou ¢asu vyskytu a aktivaci pifslusné udalosti a vyjmuti zdznamu,
"P‘_’klld mé byt diive napldnovana udalost zruSena. Tyto tii funkce jsou v podstaté
shodné u obou dnes nejpouzivanéjsich principt fizeni ¢asu: simulace orientované na
Ca50v& bezrozmérné udélosti a simulace zalozené na paralelnich procesech. Ve
‘flfuhém pripadé reprezentuji zdznamy segmenty procest a nikoliv nezivislé uddlosti.




Pii vytvofeni obecné pouzitelného fidiciho programu je proto nutné uéinit v prvé fadé
zésadni rozhodnuti, ktery z té&chto dvou zplsobii vidéni dynamiky v &ase pouzit'®.
Procesova simulace je nejbliZe realité a je dnes defacto standardem pii vytvareni
novych simulaénich nastroja. Udélosti maji oproti procestim dvé vyhody. Snadnégji se
implementuji a snadné€ji se u¢i. Oba tyto faktory povazuji v pfipadé simulaéniho
nastroje v JavaScriptu za rozhoduyjici. Neni ur¢en odbornikiim pro rozsdhlé simulaéni
studie, typicky se bude jednat o malé nebo stfedni relativné jednoduché modely. Byl
proto zvolen tento pristup (Discrete Event Simulation — DES), ktery z hlediska
uzivatele umoznuje dvé planovaci operace: napldnovdni uddlosti v daném case a
zruseni napldanované uddalosti.

Zakladni informace o implementaci i{dictho programu a dalsich podptirnych funkeich
jsou obsahem ¢lanku [B3]. Pro kalendaf udalosti jsem zvolil datovou strukturu zvanou
“heap”, ktera je binarnim stromem optimaélniho tvaru. Ob& zékladni operace zarazeni
zdznamu a vyjmutl prviiho zdznamu jsou provedeny v ¢ase O(logyn), kde n je pocet
zaznamu. Detaily jsou uvedeny v ¢lanku [B3]. Byla definovana tfida heap, jejiz
instance nazvana po vzoru Simuly SOS (Sequencing Set) je kalendafem udalosti>®,
Nasledujici kapitola shrnuje funkce, které fidici program poskytuje uzivateli. Vedle
planovani udalosti a zruSeni naplanované udalosti je to inicializace Fidiciho programu,
po které nasleduje inicializace modelu uZzivatelem a nastartovani simulaéniho
experimentu. Je rovnéZ k dispozici konstruktér evmorice zaznamu uddlosti, ktery
vytvoii jedinou vlastnost, kterou je cas vyskytu udalosti. Uzivatel po vytvoreni
zaznamu typicky vytvoii vlastnosti dalsi, napf. pro rozlieni typt udélosti a ulozeni
libovolnych dat. Pfilohou ¢lanku [B3] je uplny kod jednoduchého modelu véetné
HTML. Pouziti zdznamu udalosti je zfejmé napf. ve funkci arrival, kterda modeluje
prichod zadkaznika na str. 9. Pouziti uzZivatelem vytvofené vlastnosti eventtype pro
piepinani mezi typy udalosti je ziejmé ve funkci eventroutine na téze strance. Tuto
funkci musi napsat uzivatel. Ridici program ji opakované po vyjmuti prvniho zdznamu
z kalenddre aktivuje, zaznam udalosti je predan jako argument. Dalsi akce programuje
uzivatel, typicky pujde v prvé fadé o pfepinani mezi jednotlivymi typy udalosti, ¢ili
viechny modely mohou mit tuto funkei prakticky shodnou, tak jak je uvedena na str.
9. Dalsi funkce pak budou implementovat jednotlivé udalosti jak je to bézné u
simula¢nich jazyk( tohoto typu. Uzivatel musi napsat dalsi dvé funkce. finish run
testuje zda ma byt ukonéen experiment. Verze na str. 9 pouze testuje, jestli cas
piekro¢il délku experimentu. L.ze naprogramovat jiné slozitgj$i podminky ukonéeni
jako napf. obslouZeni uréitého poétu zdkaznikd apod. Uzivatel musi dale
naprogramovat samotné spusténi simulace a vyhodnoceni experimentu po jeho
ukonCeni. Funkce simulation na str. 11 postupné inicializuje Fidici program,
inicializuje proménné modelu, planuje piichod prvniho zakaznika a prvnf poruchu a

- Existuje jesté tieti princip zalozeny na aktivitach. Pro kazdou aktivitu je definovana
podminka jejiho spusténi, fidici program zvy3uje ¢as po krocich, ve kterych testuje podminky
Provedeni aktivit. Nizka G&innost je evidentni, presto lze tento postup vzhledem k jeho
Jednoduchosti doporuéit tehdy, kdy je nutné naprogramovat simulaéni model v jazyce, ktery
u°dP0ru Fizeni ¢asu nema. Viz modely v Pascalu na hrtp.//staff. um.edu.mt/jskl 1/models2.zip.

~ Pouziti stromové struktury s logaritmickym Gasem trvani operaci je nepochybné teoreticky
Nejrychlejsi feseni. Praxe vsak teorii odpovidat nemusi. Problémem je rezie dana relativni
.S!Eiitosti operaci na stromech ve srovnani s jednoduchymi operacemi na fetézeném seznamu.
Pri malém primérném pottu zaznamil v kalendaii tak mlze vést pouziti seznamu ke zvySeni
;_thosti. Tuto zkusenost mi potvrdil autor Lund Simuly (Fries 2001), ktery tvrdi, ze seznam
= Nakonec vzdy alespori stejné rychly jako stromy.




poté predd fizeni fidicimu programu. Po navratu je experiment vyhodnocen funkei
evaluation. Podobnost s programovanim v Simscriptu neni nahodna. Funkce
simulation je aktivovana stisknutim tlacitka Rum, jak je patrné z HTML kodu na str. 12
uprostied. Kod v piiloze ¢lanku [B3] je ukazkovym modelem z manualu fidiciho
programu: hitp.//staff.um.edu.mit/jskl1/simweb/engine/engman. html.

Simulaéni jazyky nebo knihovny poskytuji mimo Fizeni ¢asovani modelu celou fadu
dalsich funkci. Jejich vyétem zalina dalsi kapitola ¢lanku [B3]. Podrobnéji je
naznacena implementace front a statisticky monitorovanych proménnych. K jejich
implementaci je pouZzita technika Simscriptu zvana “left monitoring™ navrZena jiZ ve
¢lanku (McNeley 1968)*' pod nazvem “store association®. Princip je ten, Ze vyskyt
monitorované proménné na levé strané pfitfazovaciho pfikazu aktivuje rutinu, které je
pifedana hodnota vyrazu. Lze tak pribézné aktualizovat statistiku aniZ je programator
jakkoliv zatézovan. V JavaScriptu (a v Pascalu) je nuiné nahradit piifazovaci piikaz
aktivaci piifazovaci metody, kterda hodnotu ulozi a =zajisti vSe potiebné. Pii
vyhodnoceni experimentu pak lze piimo volat metody, které vraci prameér,
smérodatnou odchylku, apod. — viz pouziti metody average funkei evaluation na str.
10. JSSim obsahuje definici dvou t¥id pro statisticky monitorované proménné v &ase,
kdy pramér je vypocitan z ¢asového integralu (délka fronty) a pro proménné jejichz
statistika zavisi pouze na pfifazenych hodnotich (doba ¢ekédni ve fronté). Struénym
popisem piikladu simulace systému hromadné obsluhy s poruchami ¢lanek kondi.

2.5 Diskrétni simulace v JavaScriptu a vazba na HTML - [B4]

Clanek [B4] byl zatazen proto, Ze se ve své druhé &asti zabyva vyuZitim tizké vazby
mezi kody v JavaScriptu a v HTML s cilem zjednodusit co nejvice vytvéafeni
dokumentt obsahujicich simulaéni modely. V prvni ¢asti jsou shrnuty zakladni udaje
. 0 Fidicim programu, jsou uvedeny piiklady funkei, které piSe uZivatel. Po shrnuti
podplrnych prostredkit simulace je v kap. 4 naznaceno, jak konkrétné realizovat
vazbu mezi popisem struktury dokumentu v HTML aJavaScriptem, ktery
implementuje simulaéni model a jeho ovladani uzivatelem.
Prvni priklad ukazuje techniku validace vstupu nezdporné celociselné hodnoty.
Spravna hodnota je ulozena do globalni proménné numofcserf, kterd obsahuje pocet
obslouzenych zakazniki, po kterém je ukoncéen experiment (netestovano pii nule).
Jakdkoliv chyba je ohlasena, textové pole je pak piepsano ptivodni hodnotou. Tlagitko
Help zobrazi piesny vyznam hodnoty zaddvaného parametru, coZz je dusledné
dodrzovéano u vSech vstupd. V3echny modely rovnéZz umoziuji zobrazit ve zvlastnim
okné napovédu, kterd je navodem, jak model pouzivat vCetné vSech predpokladi.
Zadna dalsi uzivatelskd dokumentace nenf treba.
Nasledujici priklad ukazuje pfimou vazbu mezi instanci tfidy a HTML objekty
dokumentu. Metoda wupdate instance inistar statisticky monitorované veli¢iny je
aktivovana pii kazdém generovani prodlevy mezi piichody zakaznikli — viz funkci
Simulation na str. 118, ktera planuje pfichod prvniho zdkaznika. Na str. 119 je HTML
kéd, ktery zobrazuje'¢ast tabulky se statistikou intervaltt mezi pfichody, na str. 120 je
V¥fez okna prohlizete (vtomto piipadé Internet Exploreru 6, ale rozdily mezi

B[
l I‘\ihmoclw;odem'sejedné o sbornik konference, kde byla poprvé piedstavena Simula 67 a s ni
ANz si toho byli autofi védomi i objektové orientované programovani. Ve shorniku je rovnéz
: mﬁam diskuse po predneseni McNeleyova prispévku, kde Ole-Johan Dahl navrhuje feseni
- POmoci tiid, které jsem nezavisle pozdéji zvolil.




prohlize¢i jsou nepatrné). Aktualizace hodnot po ukonéeni simulace je provedena
jedinou aktivaci metody scrupdate, jejiz aktivace a implementace je na str. 120.
Uvedena implementace je umoznéna funkei eval JavaScriptu, jejimz parametrem je
zdrojovy kod, ktery funkce provede. Prvni aktivace funkce eval tak provede piikaz
document.forml.intstatav = average(), ktery zobrazi primérnou hodnotu intervalu
v textovém poli intstatav. Je na uZivateli, aby textova pole HTML byla spravné
nazvana. Toho lze snadno docilit definovanim standardnich useki v HTML
upravovanych podle potieby operaci “Replace All*, kterou maji prakticky vSechny
textové editory. Lze také pouzit néjaky makro pre-procesor, ktery by vygeneroval
HTML kod automaticky. Na str. 120 je také metoda winupdate, kterd dynamicky
vygeneruje do zadaného okna HTML koéd, ktery zobrazi statistické hodnoty jako
standardni text. VSechny modely umoziuji generovat vysledky v textové formé ve
zvlastnim okné. Lze je pak kopirovat do jinych dokumenti, napt. do MS Wordu. Text
na konci str. 120 byl takto zkopirovan z okna prohlizece. Uvedend technika vazeb
mezi instancemi JavaScriptu a objekty HTML umoznuje za predpokladu, Ze se
spokojime se standardnim zaddvanim vstupti a se standardnim zobrazovanim
vysledki, prakticky automatickou generaci HTML kodu. Jiz nyni mi uSetfila spoustu
prace. Na obr. 8 je tabulka, ktera slouZi k zadani parametrii nahodnych proménnych,
kterou pouzivam standardné ve vSech modelech. Ukazuje situaci pied stlacenim
tla¢itka Add, které piida 4. polozku do tabulky distribuéni funkce. Vyznam dalSich
ovladacich prvki je ziejmy. Tato tabulka je generovana HTML koédem, ktery obsahuje
piiblizné 5000 znaki na 190 fadeich. Automatické generovani tohoto kédu dosazenim
nékolika parametrt do standardniho polotovaru se ukézalo jako velmi vyhodné.

Distribution of Intervals
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Obr.8: Vstup parametrti nahodné proménne.

?QPisované simulaéni modely jsou také zahrnuty do projektu tutORial organizace
“NFORS (International Federation of Operational Research Societies) koordinovaného
Universitoy v Melbourne, viz Attp://www.ifors.ms.unimelb.edu.au/tutorial/.
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( Abstract

\ The paper deals with the modelling of Petri net based networks. For the
modelling the Logos language has been used. The Logos language is the
Logo extension intended to support teaching of Object Oriented Simulation.
Facilities similar to those of the system class Simulation of the Simula
language are available. The modelling environment able to craate, modify and
execute any number of Petri nets has been designed. Using the concept of
_subclasses the basic system has been modified to gnable modslling of both
Petri and Coloured and both Petri and Time networks.
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1. Introduction

In computer simulation one of the most important steps is the definition of the
system simulated. For this purpose various informal and formal means are
used. Use of some formal apparatus decreases the probability of errors and
ambiguities in the system definition. The apparatus used depends on the
nature of the system simulatad.

" For description of systems with parallel processes very often Petri
networks (P-nets) and their modifications are used. Use of network modsls
enables a quite natural expression of parallelism. The problem Is the
exprassion of dynamics because the original P-nets don't use time at all.
That's why the so called time nets (T-nets) were developed to incorporatse time
to network models.

For practical use of network modsls the supporting software system is
necessary.

2. Petri networks

The purpose of this section is an informal introduction of an ldea of P-nsts.
The marked P-net is a 5-tuple (P, T,1,0,M) where P and T are non empty finite
sets of places and transitions respectively. P-net is an oriented graph. The
input function | defines for every transition the set of input places. The output
function O defines for every transition the set of output places. For every
input/output place the number of input/output arcs connecting this place with
the transition is defined. Places can contain any number of the so called
tokens. Initial marking M defines the numbers of tokens in all places before
the start of the execution of the P-net. A transition can be enabled or
disabled. A transition is enabled if all its input places contain at least so many
tokens as is the number of oriented arcs from the place to the transition.
Transition which is not enabled is disabled. An enabled transition can be
fired. During firing every arc stahing at an input place takes one token from
this place and every arc starting at the transition adds one token to its output
place.

From modelling point of view places represent some conditions which
must be true before some activity (transition firing) can start. Firing changes
the markings of both input and output places. This can enable other transi-
tions to be fired. Transitions can be fired in parallel because there can be
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Environment for modelling ...

more enabled transitions at a time. Thus P-nets are very suitable for
modelling large systems with parallel processes especially means of inter
process communication and synchronization. P-nets have been intensively
studied. They have also some analytical capabilities. For details see [1]
where many other references can be found.

The disadvantage is that P-net as a formal apparatus for system
description is very primitive. That's why there are many modificaticns of the
original P-nets. See for example [2]. The Coloured nets generalise the idea
of marking. The T-nets incorporate time to network models. There are
several modifications of T-nets but typically they introduce the duration of firing
of a transition.

3. Environment for network modelling
Requirements which should be satisfied by a software system able to create
models based on various modifications of P-nets are:

a) Creation of networks with various numbers of places and transitions.
Some properties of places and transitions will be common, some will be
modified (individualized). It should be possible to modify both network
marking and topology. Interactive network execution is required.

b) Both places and transitions have some attributes and can perform some
actions (procedure attributes).

c) For T-nets the activity is expressed as a performance of parallel
processes (process is a sequence of firings of a transition).

d) The system should be open for other types of networics because there is
a continued development in this field. An introduction.of a new network
type should be based on an existing system (e.g. system for original
P-nets) and only new special features should be added.

8) A means (language) used must mest all those requirements directly by
its own constructs. Writing translators or language preprocessor is too
time consuming and not necessary. )

The Object Oriented Programming (OOP) copes with all the problems
mentioned above in a very natural and elagant way. Its main principles are
as follows:

1) System dynamics is understood as a common performance of objects

(actors). Each object has its value and procedure attributes and has its
life. In Object Oriented Simulation (OOS) the life has a dimension in time.
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2) It is possible to define prototypes (classes) of similar objects and to
generate any number of instances according to the pattern. A class
represents a general knowledge, which is individualized by attributes of
generated objects.

3) The inheritance principle enables a hierarchical classification of classes.
A subclass inherits all attributes from its parent class. New attributes may
be added, attributes inherited may bs changsd. Thus a subclass
represents a more detailed knowledge based on the more general
inherited knowledge. Each subclass may have its subclasses stc.
Procedure attributes (actions) of the parent class can be considered as
a problem oriented language within a subclass. Thus new constructs can
be added without writing any language processors.

4) There are facilities for communication and synchronisation of lives of
objects which have a time dimension in case of QOS.

The use of the OOP approach to solve problems mentioned above is
evident. Knowledge of places and transitions can be represented by two
classes with appropriate attributes storing marking and information about
network topology. Actions can represent activities involved in transition firing.
The most important is the use of inheritance. All network concepts have
some common features. Those can be inherited. New things and ideas can
be introduced by adding new attributes or by modifying existing ones.

3.1 The Logos language

The Logos language is an extension of the Logo language. Its purpose is
especially a support of education of OOP and OOS. The Logos language
enables a use of all Logo facilities and moreover it offers a set of facilities
useful for creation of simulation models of discrete systems. From Logo point
of view the new constructs are procedure calls (all names start by the “I"
character). New simulation oriented statements are similar to those used in
the Simula's system class Simulation. The Logo interpreter enables an
interactive work which is very advantageous for education where the relatively
limited speed doesn't cause problems. There will be another paper at this
' conference dealing with the Logos language in more detail.
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4. Knowledge of P-nets
The knowledge of P-nets is represented by 3 Logos classes:

5 — class representing a P-nst,
$p — class representing a place of a P-net,
$T — class representing a transition of a P-net.

4.1 Knowledge of a P-net
The following example shows a conversation which declares the class $ with
14 attributes (without body).

?|CLASS "§

INSERT !ATTR OF §

NOP NOT AP AT EX FP FT I F S DP DT DPN DTN

INSERT !BODY OF § (Enter pressed)

REPORT ON §

ATTRIBUTES OF § :

[§.NOP $.NOT $.AP $.AT $.EX $.FP $.FT §.I $.F 5.5 $.DP
$.DT $.DPN $.DTN]

BODY OF § :

[& 1 !TERM] (this is an empty body)

In the Logos language it is not necessary to distinguish between value
and procedure attributes. It is possible to change a value atiribute to a
procedure one and vice versa. The class $ has the following value attributes:

NOP — number of places,

NOT — number of transitions,

AP — the actual place (place to work with at a time),

AT — the actual transition,

EX — this attribute distinguishes whether the object has been created (1)
or not (0), " '

FP.  — number of the first place of the object (it is possible to create and
execute several P-nets), '
number of the first transition of the object.
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" The class $ has the following procedure attributes:

I — initialization (creation) of the object,
F — fixing (modification) of the object,
s — simulation (execution) of the object.

The folldwing is the listing of the procedure $.I whose parameter is
the object (P-net) number. Notes in curl brackets are not a part of the
program:

TO $.I :N
(LOCAL "P "I “J "K "FP "FT) {Local variables}
MAKE "P (WORD "§$ :N) . {P contains the object name eg. $1}

IF THING (WORD :P ".EX)>0 {Test whether $n.EX=0 or not}
[PR ( LIST "PETRI "NET :P “EXISTS "YOU "CAN "CHANGE "IT
"( WORD :P ".F ") ) .
PR ( LIST “( "IT "HAS THING (WORD :P ".NOP) “"PLACES "AND
THING (WORD :P ".NOT) "TRANSITIONS ") )

PR " STOP] {Information about an existing object}
TYPE ( LIST "ENTER "NUMBER "OF "PLACES "OF "THE “PETRI “"NET
B o) {Prompt}
MAKE WORD :P ".NOP RW {Reading atiribute $n.NOP}
TYPE ( LIST "ENTER "NUMBER "OF “TRANSITIONS "OF "THE "PETRI
"NET :P ": )
MAKE WORD :P ".NOT RW {Reading attribute $n.NOT}
MAKE "I THING (WORD :P ",NOP) {Number of places}
MAKE "J THING (WORD :P ".NOT) {Number of transitions}
MAKE "FP :$P.! + 1 {Standard attribute $P.! contains}
{the number of the last object (here place) generated)
MAKE WORD :P ".FP :FP {Store the value to $n.FP}
MAKE “FT :$§T.! + 1 € {dtto for the first transition}
MAKE WORD :P ".FT :FT
REPEAT :I [MAKE “K !NEW "$P] * {Create places}
{The Logos statement INEW creates a new object}
REPEAT :J [MAKE "K INEW "$T] {Create transitions}

MAKE "K THING (WORD :P " FT) {First transition}
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REPEAT :J [ MAKE (WORD "4T :K ".EMP) 1 MAKE "K :K+l1 ]
{Make all transitions empty — see attribute $Tn.EMP}

MAKE WORD :P ".EX 1 {Make the object existing} {
MAKE WORD :P “.AP :FP {Actual placs is the 1st place} '
MAKE WORD :P ".AT :FT {dtto for the actual transition} B
PR ( LIST "PETRI "NET :P "HAS :I "PLACES “AND :J “TRANSITIONS f

) |
P_R (LIST " ( “"FIRST "PLACE :FP ", "FIRST "TRANSITION :FT ")) E :
END |

The procedures §.F and $.s are.much more complicated, their i
description is beyond the scope of this paper. Appendix A contains the ‘E
description of user commands interpreted by these procedures. i

|
|
i

-

4.2 Knowledge of a P-net's place
' The class $p has only one value attribute M which contains the marking of the
place. Then it has 2 procedure attributes both with 2 parameters:

REM n m — removing m tokens from the place n,
ADD n m — adding m tokens to the place n.

These procedures enable individualization of P-net places. Every place
has its own copy of the procedure attribute. So it is possible to change (edit) i
those procedures after P-net creation. Procedures can be used to collect i
statistic data, to display messages about current or special markings etc.

4.3 Knowledge of a P-net’s transition
The class $T has the following value attributes:

IP — list of input places,

oP  — list of output places, i3

IPN — list of weights of input places (numbers of arcs from the place to _ i
this transition), [

OPN — list of weights of output places, | '

EMP — this attribute distinguishes whether the transition is empty (1) or |

whether it has been already connected to the net (0).
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The class $T has the following procedure attributes both with 2
parameters:

TEST n t — test whether the transition t of the net n is enabled,
FIRE n t — firing the transition t of the net n.

These procedures perform activities described in the section 2. They
can be modified to introduce special features to P-net based models. One
typical example of such a modification is an implementation of the so called
predicate — ses also [2]. Predicate represents a more complicated condition
to enable transition firing. Within the procedurs $T+.TEST (name of the
attribute TEST of the transition 1) it is possible to evaluate any predicate
(logical function of markings of input places of t).

The modification oi the procedure $Tt .FIRE enables implementation
of any special effects connected with the firing of the transition t.

4.4 Environment for P-neis
The environment for work with P-net based models uses the simulation
facilities of the Logos language even if the models don't exist in time. The
time is introduced in T-nets — see later. In Logos every simulation is in fact
an execution of the body of the object !MAIN1 of the standard class !MAIN.
The computation starts by the command ! stMULATION followed by entering
the program name and the attributes and the body of the class !MAIN. The
following is the beginning of the conversation creating a program PNET in
debugging mode. User attributes of 1MAIN are not used, entering of the body
- is not shown because it is displayed as a part of the Logos report. The layout
has been edited because of readability.

? | SIMULATION

INSERT THE NAME OF YOUR SIMULATION PROGRAM.
IT MUST START WITH A LETTER.

NOT MORE THAN FOUR CHARACTERS RECOMMENDED.
PNET '

DEBUG?

TRUE

INSERT |ATTR OF !MAIN (Enter pressed)
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INSERT !BCDY OF !MAIN

[lCLASS "§ !CLASS W8P ——— etc. see report ——]

REPORT ON !MAIN :

ATTRIBUTES OF !MAIN : []

BODY OF IMAIN :

[& 1 !CLASS n$ |CLASS "$P !CLASS "5T]

[s 2 |RESAVEIMAGE]

[& 3 PRINT [* * * ENTER COMMAND ( C|F|F N|S[S NIQ )] MAKE "$1
RL]

[& 4 IF ( FIRST :$1 ) = "C [!NEXT 9 ] i
[ 5 IF ( FIRST :$1 ) = "F [INEXT 11] ]
\I {& 6 IF ( FIRST :$1 ) = "5 [INEXT 131 ]
! (¢ 7 IF ( FIRST :$1 ) = "Q [MAKE "IMAINL.!LC 3 THROW

\ "TOPLEVEL] ]
(& 8 PRINT [UNKNOWN COMMAND] PRINT " INEXT 31
[& 9 MAKE "$1 INEW "$ MAKE (WORD :$1 ".EX) 0 PRINT ( LIST
"pPETRI “NET :$1 "CREATED ) ]
[¢ 10 RUN ( LIST {( WORD :51 ".I ) :5.1 ) INEXT 3 ]
[& 11 MAKE "§1 BUTFIRST :$1 IF EMPTYP :51 [MAKE WE sl
[MAKE "$1 FIRST :51] | _ _
, (6 12 RUN ( LIST ( WORD "§ 161 “.F ) :81 ) INEXT 3 ]
' [& 13 MAKE "$1 BUTFIRST :$1 IF EMPTYP :51 [MAKE "$1 :8$.1]
'R [MAKE "$1 FIRST :$1] ]
by [& 14 RUN ( LIST ( WORD "$ :$1 ".S ) :$1 ) INEXT 31
b [& 15 !TERM]

Notes:

1) The body of the object IMAINT is a list of segments. The beginnings
“s n" of segments are automatically added by Logos. The segment is a
sequence of Logos statements. The statement !NEXT n is an uncondi-
tional jump to the segment number n.

2) The first segment contains declarations of classes mentioned above. The
2nd segment contains the statement ! RESAVEIMAGE which saves the
whole program (Logos plus all variables and procedures) on disk. It is

performed as the 1st statement after loading. Soitis possible to load the

o
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program by the Logo statement LOAD, to edit it and after starting by the
Logos statement ! Go all changes will be saved on disk.

3) Segment 3 prompts the user and reads the command. Then the 1st letter
is tested and the control is passed to the appropriate segment. The
standard attribute !MAIN1.!LC contains the number of the segment to
be executed as the next one. In the command “Q~ it is assigned the
value 3 and the control is passed to the Logo interpreter. So the next
execution of the program starts by the prompt.

4) The command “C" (segment 9) creates a new object $n of the class $
and starts the procedure $n. I to initialize it.

5) The commands “F" and “s" (segments 11 and 13) test whether the
‘network number has been entered. If not the number of the last network
generated is taken. Then the procedurs $n.F or $n.5 respectively is
called.

6) After execution of all commands but “Q" the control is passed back to the
prompt. The last segment with the Logos statement ! TERM finishing the
execution of the !MAIN1’s body is automatically added by Logos.

Appendix A contains a concise user guide of the Petri nets simulator
called PETSIM.

5. Knowledge of Coloured nets
Coloured nets generalize the idea of marking. The finite non empty set of
colours is defined. A place can contain tokens of different colours. So the
marking of a place is a list whose elements are numbers of tokens of different
colours. Similarly the weight of an arc from an input place to the transition is
a list. Its elements are numbers of tokens of different colours required by this
arc to enable the transition. These numbers of tokens are removed from the
place during the transition firing. Similarly the output arcs contain the lists with
numbers of tokens to be added to output places.

The knowledge of coloured nets is represented by subclasses of the
classes described in section 4. The following subclasses have been defined:

$ ¢ — subclass of the class $ representing a coloured net. It has one
new attribute Noc which contains the number of colours,
$p_Cc — subclass of the class $P representing a place of a coloured net,
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$T_C — subclass of the class $T representing a transition of a coloured
net.

With the exception of noc all subclasses have the same attributes as
their parent classes. It is possible because Logo variables may contain both
single values and lists, Procedure attributes have been modified according
to the rules mentioned above.

The environment for work with coloured nets is very similar to this for
P-nets. The first segment of the body of the object of the standard class
IMAIN contains the declarations of both parent classes and subclasses. The
Logos statement ! suBCcLASs "$ "C declares the subclass $_c of the class
5. It copies and renames all attributes of the parent class. For example the
$ .NOP is renamed to $_c.NoOP etc. Then the user is prompted to change by

"editing the attributes. Because the parent classes are also present it is

possible to create, modify and simulate any number of both Petri and
Coloured nets at a time. The body of the object !MAIN1 has been slightly
modified to enable working with both types of networks.

Thus the QOP approach of the Logos language has enabled the
creation of a new environment with the minimum effort.

6. Knowledge of T-nets

Using the same method as for the Coloured nets the environment for work
with the so called modified T-nets has been created. The T-nets introduce the
time to network models, To test whether the transition is enabled or not the
predicate is evaluated. Markings of places are generalized. The most
important difference is the use of the body of the class $T_T called
$T_T.!BODY, This is the class representing the knowledge of a transition of
a T-net. The following is the listing of the $T_T. ! BODY.

[& 1 IF ( RUN ( LIST WORD !CURR ".PRED ) ) = 1 [ INEXT 2 ] [
INEXT 5 ]] s

[& 2 RUN ( LIST WORD !CURR ".XP ) ]

{& 3 !HOLD RUN ( LIST WORD !CURR ".DUR ) ]

[& 4 RUN ( LIST WORD !CURR ".YP ) !NEXT 1 ]

(& 5 IQUE ( WORD "$_T :$1 ".QU ) ]

[& 6 !OUT ICURR ( WORD "$ T :51 ".QU ) INEXT 1 ]
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[& 7 ITERM ]

Notes:

1) The 1st segment tests whether the transition is enabled. The procedure
$T_Tn.PRED evaluates the predicate enabling the transition n. The
Logos function !CURR returns the name of the so called current object
(object whose body is executed). |If the transition is enabled the
$T_Tn.PRED returns “1".

2) The 2nd segment performs the procedure $T_Tn.XP which represents
the activity connected with the beginning of the firing of the transition.

3) The 3rd segment represents the duration of the firing. The Logos
procedure ! HOLD suspends the execution of the object’s body for the time
specified. This time is computed by the procedure $T_Tn.DUR.

~ 4) The 4th segment calls the procedure $T_Tn.YP which represents the

activity connected with the end of the firing of the transition.

5) In the 5th segment the Logos procedurs ! QUE puts the current object to
the specified queus. QU is the new value attribute of the class $_Tn. It
is a queue of the disabled transitions. Every place of the T-net has a new
attribute which is a list of transitions which have this place among their
input places. After changing the marking of any place the transitions from
this list waiting in the queue Qu are resumed. Their bodies continue at
the segment 6.

6) The Logos procedure ! ouT in segment 6 removes the transition from Qu.
The control is passed to the segment 1 where the predicate is evaluated.

The body of !MAIN1 has also been slightly modified especially the “s*
command. It calls the !HOLD procedure to define the duration of the
simulation run. After its completion the procedure $_Tn.EVAL which
evaluates the simulation results is called. For T-nets it is supposed that
almost all procedure atiributes of objects will be modified according to the
simulation requirements. The environment enables work with both Petri and
T-nets. It is consistent with both environments described above because the
same user commands are used. The user's work on a simulation model
consists in the definition of the network topology and especially in program-
ming (editing) the procedure attributes of all objects including !MAINL. Itis
Possible to create and work with several networks simultaneously.
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7. Conclusion
The design of the three environments has proven the usefulness of the object
oriented approach supported by the Logos language. The purpose of the soft-
ware packages is to support education of the following topics:

- Object Oriented Simulation of discrete systems,

- network modelling using Petri net based formalisms,

- application of principles of OOP.
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Appendix A: Petri net simulator user guide.

Starting system:

LOGO Starting Logo interpreter from MS-DOS.

LOAD “PETSIM Loading an empty system.

or ! f

LOAD "Any name Loading existing network(s) — see SAVE. |
I

1GO Starting P-net interpreter. ,
|

PETSIM commands:

|
|
|

Prompt:
* * * ENTER COMMAND (C|F|F N|S|S5 N|Q)

e Creating a new P-net. l g
After prompt enter number of places and transitions. PETSIM
displays the numbers of the first place and the first transition.
F [n] Fix (modify) the P-net n (last created by default). ]
Prompt: I
ENTER COMMAND ( H = HELP ) !
Subcommands:
l
H Displaying menu.
T [n] Create the connection of the transition n (first or next by
0 default). After prompt enter lists of:
- input places |
- weights of input places
" - output places:
' - weights of output places
l
P [n] Set marking of the place n (first or next by default). After
prompt enter the marking as an integer constant.
M

Set markings of all places. After prompt enter list of mark- :
ings. : i
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Display P-net information about:
D all places and transitions,
all transitions,

DT

DTn transition number n,
D P all places,

DPao place number n.

Quit the command F (go to the upper level).
It is recommended to save the network(s) to disk using the

Logo SAVE command.

Simulate the P-net n (last created by default).
Prompt:
SET MODE | DISPLAY | QUIT ( 0111213IDIQ )

Options:

Stop before every transition firing.
Prompt:
PRESS 'S TO SET MODE OR ANY KEY TO CONTINUE.

Stop if there are 2 or more enabled transitions.
" (Select transition to be fired).

Random selection of a transition if there are more than one
enabled. Displaying messages about enabled and fired
transitions.

Random selection of a transition, no display on the screen.
(Use this option to search for deadlocks).

Notes:

If all transitions are disabled the system displays the mess-
age: DEADLOCK — NO TRANSITION enasLED then it displays
the markings of places.

For options 2 and 3 it is possible to stop the run by pressing
any key but 'S'. By pressing 'S’ the run is stopped and it is
possible to change the option. Otherwise the user is
prompted to press any key to continue.
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D Displaying markings of places.

0 Quit the command S (go to the upper level).
o Quit the PETSIM (go back to the Logo interprater).
Finishing work:

SAVE "Any name Saving the whole system with all created net-
works in the current state to disk.

.DOS Go back to MS-DOS.
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Abstract

The common problem of discrete simulation is complexity of most of the activities involved.

That's why there is a permanent effort to find a way how to simplify the process of at least to
give a clear and commonly acceptable guide. The so called Paradigm Oriented Simulation is
based on certain apparatus (abstraction, paradigm) which is used as a tool for the description
of the system simulated, as a base for creation of the simulation model and as a support of

other tasks like model verification, experimentation, documentation, etc. A commonly

accepted tool for simulation of discrete systems are Petri networks and their modifications. To

support Petri net based simulation the package PetriSim written in the Turbo Pascal language
has been created. It contains a graphical editor of Petri networks and it also supports
development of user defined models based on Petri networks. Version 2 of PetriSim supports
simulation based on the so called Time networks. There are several modifications of Time
networks, but all of them are based on the original Petri networks and all of them introduce
time to network models. PetriSim is based on the fact, that firing of a transition can take a
certain time. This time (firing duration) is generated by the user at the moment when the firing
starts. So there may be more transitions in the “firing on” status with various times of the firing
completion. The package thus contains a usual (SQS) structure which orders these future
events by their occurrence in time. Time networks based simulation starts by creating a Time
network whose purpose is timing and synchronisation of all activities in the model. Then the

- user writes a Turbo Pascal unit whose procedures contain all user defined details like model
initialisation, observation and statistics, experiment evaluation, and debugging operations. All
these actions are supported by objects, procedures and functions, that simplify programming of
all typical activities. The paper explains the basic ideas and shows how a simulation model of a
simple queuing network has been created. The PetriSim environment makes model creation

relatively simple and straightforward even for a not very experienced Pascal programmer.

1. Introduction

Computer simulation of discrete systems belongs to most difficult programming tasks. The

feason of it is that we must add one more dimension - time, because in the model it is
Necessary to keep the same sequence of activities as in the real system. That’s why
ramming simulation models in general 3GL is considered too difficult. Of course there are
ient simulation languages like Simscript, Modsim, class Simulation of Simula and others
offer tools for all typical simulation tasks. The problem is learning these languages. For
€ who do not intend to write simulation models regularly and for students who are
-"fed %o learn basic ideas of simulation during one semester COUTSe this is an unacceptable
mvestment. That’s why there is a permanent effort to simplify the simulation process.
je?“-s.t for example many special purpose simulators (like Comnet, Network, Simfactory,
# basically all simulators of continuous systems), in which only input data are requested.
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Another approach is the so called Paradigm Oriented Simulation. It is based on certain
paradigm that is used as a tool for the description of the model and other activities involved in
a simulation study. The tool used depends on the nature of the system simulated. A commonly
accepted tool for description of discrete systems are Petri networks and their modifications.
Petri networks (P-nets) enable a very natural and lucid way how to express cooperation and
communication of parallel processes. This is very useful when modelling computer and

: communication systems but there exist also many other application areas. Detailed description

: of P-nets and their modifications is out of the scope of this paper. All important definitions and
results can be found in [1], [2] deals especially with modifications intended to increase the
modelling power of network models. Because of the paper consistency the next chapter
explains basic ideas of Petri and Time networks.

2. Basic Ideas of Petri Nets

The marked Petri Net is a 5-tuple (7, 7,/,0,M) where:

P and T are non empty finite sets of places and transitions respectively (P ™ 7'= ).

I is the so called Input function: /: PxT — N, where N is the set of non negative integer
numbers. The value I(p,1) is the number of (directed) arcs from the place p to the transition 7.
O'is the so called Output function: O: TxP — N, where the value O(t,p) is the number of arcs
from the transition 7 to the place p. So the 4-tuple (P,7,/,0) is a bipartite (bichromatic) directed
multigraph whose arcs connect nodes of 2 distinct sets (7’ and 7). When expressed graphically
places are drawn as circles and transitions are drawn as short thick lines - see the Figure 2.

M is the initial marking of places: M: P — N, where the value M(p) is the number of the so
called tokens that are located in the place p.

A transition is enabled if all places contain at least so many tokens as is the number of arcs
from the place to the transition. A transition which is not enabled is disabled.

An enabled transition may be fired. During firing every arc whose endpoint is the transition
removes one token from its starting (input) place and every arc starting at the transition adds
one token to its ending (output) place. -

From the modelling point of view places represent certain conditions that must be true for
certain activity (transition firing) to start. Firing changes the marking of both input and output
‘places. This may enable or disable other transitions, etc. All enabled transitions may be fired in
parallel. Petri networks have both analytical and descriptive (modelling) capabilities. For more
_ﬁe‘tails see [1]. Because the descriptive capabilities of the original Petri model are rather poor,
there are many extensions to the basic P-nets to improve modelling power of network models.
A good overview can be found in [2]. The so called Time networks (T-nets) introduce time,
‘because in the original P-nets time does not exist at all. There are several approaches how to
cope with time, PetriSim is based on the most common “firing delay” approach. Firing takes
Certain time (that of course may be zero). When a firing starts, the tokens are removed from
nput places (this represents the fact, that certain activity has started). When the firing ends, the
lokens are added to output places (certain activity has terminated). Analytical properties of this
abstraction are irrelevant, because PetriSim uses T-nels as a descriptive tool only.

Hrisim Facilities
0 explain the basic ideas of 7nef hased Paradigin Smmlation this chapter describes how a

lar simulation model has been created using PetriSim facilities. The emphasis is the
point of view. Implementation aspects has been briefly dealt with in [3]. PetriSim
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implementation is based on object oriented capabilities of the Turbo Pascal 7 language. All
screen objects are object instances, most PetriSim functions are represented by object methods.
This approach makes any PetriSim amendments and modifications relatively easy, that has been
proven during implementation of the version 2. Objects involved in PetriSim implementation
are not directly accessible to the user. There are some units in PetriSim environment, that are
intended as a support of typical simulation tasks (random numbers, statistics, linked lists). Here
the user is supposed to use the objects of these units either directly or to declare other
specialised objects with inherited capabilities. The following main steps are involved in building
a simulation model using the 7-net based Paradigm Simulation:

- Informal description of the system simulated,

- Creating a T-net model,

- Creating a user model on the T-net skeleton,

- Experimentation with the user model.
PetriSim supports the last three steps.

3.1 Informal Description of the System Simulated

The system simulated (see Figure 1) is a queuing network made of three queues and three
servers. All customers are at first served by Serverl. If the Serverl is busy, they wait in the
queue Queuel. Then the customer proceeds either to the server Server2 (with the probability
P)) or to the server Server3 (with the probability 1-P;). Customers waiting for these servers
form the queues Queue2 and Queue3 respectively. Population of customers and sizes of
queues are not limited, queues are orderly FIFO queues. Interval between two adjacent arrivals
and duration of the three services are random variables with experimentally obtained
distribution (distribution function tables are available). For this system the usual queuing
statistics (times spent at the servers, queue lengths, and total time spent in system) is to be
found together with utilisation of servers. This queuing system can not be analysed by
analytical models of queuing theory because of general distribution of arrival intervals and
service duration. (Queuing theory results for queuing networks are very limited anyway and
even those that exist are very complicated and time consuming to use). So the only feasible
way how to get the results is creating a simulation model and experimenting with it to gather
all data necessary to compute the results.

- To create a network model an informal description (the first step of all simulation studies)

should be made in such a way to support identification of parallel processes and their
nteractions. Instead of parallel processes it is also possible to state clearly necessary conditions

and results of all activities.

Queue2 . Server2

Queuel Serverl
o 1-P,

Queuel Server3

Figure 1: The queuing system heing simulated
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3.2 Creating the T-net model

A T-net model is intended to represent the basic relationships in the model, especially all
synchronisation and communication mechanisms, and unlike P-net model also the model
timing. There 1s no commonly accepted guide how to convert real world processes to the ‘T-
net language’. Nevertheless certain network constructs are obvious and may be learned from
other network models. T-net creation starts by expressing the conditions in terms of presence
of tokens in certain places. Then the activities must be expressed as transitions together with
arcs from input places and arcs to output places. One possible T-net abstraction of the queuing
system in the Figure 1 is the T-net in the Figure 2. Note that graphically a T-net looks like a P-
net. The difference is visible only during a user simulation experiment when the network can be
displayed in current status (the transitions in firing state are displayed in different way together

| with the firing completion time).

<:E:>
Custoners_in
:::Lueuel

[ —]|Generator
A

Custnners_l

Servicel

f;iz%z
2

Queue2

tarting
ueue3

Servicez Serviced

Custoners_2 Custoners_3

Figure 2 : T-net abstraction of the queuing sysieni

Arrival of customers is represented by the transition Generator whose firing duration is the
mterval between two adjacent arrivals. The token in the place Starfing (the only input place of
Generator) starts the whole process. When the firing of Generator ends the token is returned
10 Starting, that will start immediately next firing (interval till the next arrival). The place

lomers waiting for Serverl. Working of Serverl is modelled by the transition Service/
those firing duration is the random service time. The transition has one input place Queue!

ice can start if there is at least one customer - token - in the queue). The places P2 and ps
S used 1o model the random switching of customers. When firing of Service/ ends, a token is
placed 1yoqh to 1, and paoand a user procedure s activated. This procedure then removes

Idomly) a token from either the place p; or ps. So only one of the transitions 7, or 73 will be
d, that will place a token to one of the places Quene2 or Quene3. This user interaction with
Clwork should of course be used only if necessary with great caution, but it works well




! and T-net is kept relatively simple. There is a purely T-net way how to model random
switching, but it needs several more places and transitions. Obviously the transitions Service2
and Service3 represent the other two servers, the places Customers_I, Customers_2, and
Customers 3 are counters of customers served by the three servers.

In PetriSim environment a T-net can is built in incremental way by repeated additions of
' various objects to an initially empty net. It is always possible to add any number of new places
and new transitions and to create new arcs between them. Arcs can be deleted and they may be
given practically any shape including free drawing - see the arc from Quenel to Servicel. The
T-net can always be stored in a disk. Because the file name can be defined by the user it is
possible to keep more versions of the same network model. PetriSim contains some
demonstration examples that explain basic ideas and typical network constructs.

PetriSim supports several simulation modes that do not work with time (so actually a P-net
model is simulated). These modes differ in the degree of user control over firing of transitions.
If there are more enabled transitions the user can either select the transition to be fired or the
selection can be done randomly by PetriSim (equal probabilities). Some modes are based on
user action before firing a transition. These step modes enable detailed studying and analysis of
network behaviour. There are also two automatic modes with and without delay between
firings. The fast mode is supposed to be used when searching for deadlocks. P-net simulation
checks basic logical relationships in the model, especially all kinds of communication and
cooperation procedures and mechanisms. If there are any user interactions with the model,
they must be in these P-net modes performed manually, so practically only step modes can be
used. Also all cases when the network behaviour depends on firing duration must be simulated
by careful user’s selection of the transition to be fired.

3.3 Creating a user model on the T-net skeleton

After experimentation with the P-net a user model is created to obtain quantitative results and
to enable simulation in time. T-net models are able to do the model timing, but to get
quantitative results they are as primitive as the original P-nets. The only quantitative data
‘available are various counters represented by numbers of tokens in certain places. In our model
~ this is used to collect data on lengths of queues and to count customers. The basic problem is
the fact, that tokens do not contain any data. In our model we have to measure the time spent
‘at servers and in the system. When working with tokens only, we know times when services
, but we do not know when services (or waiting) have started. This is a fundamental

here are networks (P-net extensions) that generalise the notion of tokens so that tokens

y be practically any data structures. This does not solve another problem: keeping tokens in

‘fuctures. For example in our model we want the tokens to wait for service in FIFO queues.
fi€ original P-net model of course does not define any structure on tokens in a place (they

‘@ set). So it is obvious, that any individualisation of tokens must be based on many

. it{bnal assumptions that of course acts against the simplicity and clear, well defined
9IKing of network models.

Fu

: '_ch'é_f approach is separation of network and user data. This approach is used in
Sim. Network is kept as primitive as possible (the only difference between T-nets and P-

S IS the firing duration). All user data is kept (and observed) in user data structures. All




operations on user data structures are of course activated and synchronised by T-net generated
events (starting and finishing firing of certain transitions). So for example in our model the
place Queuel has an associated queue (a linked list similar to SimSet’s Head) that contains
objects (descendants of a linked list item similar to SimSet’s Link) that represent customers.
Having this it is possible to keep any user data on customers (in our model we just record the
arrival time and the time when the first service has finished). Inserting customers to the queue
is synchronised by finishing firing ‘of Generator, removing is synchronised by starting firing of
Servicel (during the service the object is referenced by a pointer associated with Servicel).
There are another two queues associated with the places Quewe2 and Queue3 respectively.
| Other user data is used for statistics and model parameters. Separation of user and network
| data keeps the network model clear and simple and the user is not limited in complexity of
user data structures. The disadvantage of this approach is certain duplicity (customers are
represented both by tokens in places and by objects in queues). This duplicity of course does
not cause memory problems (all tokens in a place are represented just by the number of tokens
- one long integer in four bytes).

The user part of the model is made of procedures and data written in the Pascal unit USER.
For each version of USER the program PETRISIM.PAS is recompiled, so the program
PETRISIM.EXE is in fact one particular user model (that of course may be used to create and
work with any number of other nets, but can not perform their user experiments). In the
implementation part of the unit USER it is possible to declare any number of procedures,
functions, variables and any other objects. These are the user defined interface procedures of

the unit USER.

USERINIT = User model initialisation called once before starting the experiment. This

procedure is supposed to set up the initial model status that involves typically these:

- initialisation of user data like storing zeros to counters, etc.,

- creating and preparing all random, statistical, and SimSet like objects,

- reading model parameters (from keyboard or file),

- preparing animation.
USERFIRE(Var s : String) = The user's activity when starting firing a transition. The
parameter s is the name of the transition to be fired. This and the next procedure represent
- the user’s part of model behaviour that includes collecting statistical data, animating the
~ model, etc.
USERENDFIRE(Var s : String) = The user's activity when finishing firing a transition. The
‘parameter s is the name of the transition. This and the previous procedure represent the

user’s part of model behaviour '
USERISVAL = Evaluation of the experiment called once when the experiment terminates. This
cedure is used to compute the results and to display them and/or store in file. Then the
tontrol is passed back to PetriSim.
EAD = The user's activity in case of deadlock. Deadlock is a T-net status with no
fnabled transition. Normally a deadlock is caused by an error in synchronisation or
munication algorithm. This procedure may display a user’s message and perform any

' 'DOft. writing procedures of the unit (/SER, there are certain facilities in PetriSim units
?b]_c the user to generate firing delay, to get the model status and time, to change




FIREDELAY(d! : Real) is a procedure that generates a firing delay 4. This procedure is called
by the procedure USIRIFIRE when the firing starts. A notice is created and inserted to SOS,
so the firing will end after df time units.

MARKINGOF(PName : String) : Longint is the function that returns marking of the place
PName. If the place is not found, the function returns -1. This function is used typically to
collect statistical data.

PNTIME : Real is the function that returns the model time, that can not be directly changed.

CHANGEMARKING(PName: String;, M: Longint; Var OK: Boolean) is a procedure that
changes marking of the place PName to M. OK contains false if the place has not been
found.

SHOWNIET is a procedure that displays the T-net in current status. Transitions in “firing on”
status are displayed in different way together with firing completion time. This enables a
detailed analysis of model behaviour.

TERMINATE is the procedure that terminates the user simulation experiment immediately
after return from the procedure /SERFIRE or USERENDFIRE to PetriSim.

3.4 Experimentation with the user model

User experiment is started from PetriSim for the selected T-net (there may be many nets in
RAM at a time, but only one of them has its simulation experiment). The user selects the so
called User experiment mode and then activates the menu option Start simulation. PetriSim at
first calls the procedure USERINIT and then at proper times the procedures USERFIRE and
USERENDFIRE. If there are more enabled transitions at a time, the one to be fired is selected
randomly (equal probabilities). Anyway all enabled transitions start firing before the model time
is updated to the next event time. In case of deadlock the procedure USERDEAD is called. If
there is no deadlock, the experiment can be stopped only by the user by calling the procedure
TERMINATE either in USERFIRE or USERENDFIRE. In this case the USEREVAL procedure
is called and the control is passed to PetriSim. Then the experiment can be started again.
Breakpoints are not implemented, because together with tokens it would be necessary to store
time, the whole SQS, and all user data. Because PetriSim is intended as an educational tool,
‘very long experiments are unlikely. After finishing the experiment the user sees the T-net in
final status. There are menu options Record marking and Initiate, that enable storing and
festoring network status. When loading a T-net from disk, the initial status is recorded
Aautomatically.

: !

4. Statistical objects

unit STATIST declares objects RAccum and RTally whose values are automatically
cally observed. They in fact represent observed real variables. Because Pascal does not
nything like Simscript’s left monitoring, it is necessary to update a value by sending a
Jage to the object instance (calling the method RUpdate with new value as a parameter).
‘method does all necessary updating and observation. Upon creation the object is initialised
case of RAccum involves storing the initial value. Then there are methods - functions
m the current value and usual statistical figures (average, minimum value, maximum
5 ,I\'anance standard deviation, and for R7ally objects number of updates).

Uifference between RAccum and R Tally is the fact, that unlike R7ally RAccum takes into
ANt time. For example when storing a new value to an RTally object three times, the




simply computed as a difference between current time and the recorded beginning of the
measured period. So for example the statistics of the total time spent in the system is collected
by this statement:

s

" STime.RUpdate(PNTime - S2Cust™ Arrival);

i where STime is the R7ally object instance, RUpdate is the updating method, PNTime is the
current time, S2Cust is the reference to the customer object whose service ends (here at the
server Server2), and Arrival is the attribute that contains the time when the customer entered

the system.

RAccum objects compute the time integral, so for example the average is computed by dividing
the value of the time integral by duration of the time interval (initialisation automatically
records the starting point - usually zero, the end point is the current time). In our model
RAccum objects are used to observe lengths of queues and utilisation of servers (each server
has an associated real status variable with two possible values: O=idle, 1=working). So the
average of this variable multiplied by 100 is the utilisation in %. So for example when the
length of the Queue2 is changed, the change is recorded by this statement:

Q2. RUpdateMarkingOf("Queue2’));

~ where 02 is the RAccum object instance, and RUpdate is the updating method that is passed
the number of tokens in the place Queue2 (number of waiting customers). User does not write
any other code to get statistics. In the procedure USEREVAL the statistical results are just
used in statements like this one:

WriteLn("Length of Queue2: Maximum: ', Q2. RMax:7:0, " Average ', Q2.RAverage:7:2),

S. Random objects

- The unit RANDOMS declares the objects RandRS, RandRl., and Randl that represent random
__u_m'_bers of three types: real step (discrete valu&s), real linear (linear interpolation between two

om numbers, so the mltlahsation method is é,wen two parameters: seed of the random
nerator and the distribution function as an array of records of the fixed size. There is just one
ore method that returns the new random value. So for example when starting firing of the
ion Service l, the end of firing is scheduled by generating a random firing delay:

FireDelay(Service |.Ri.Value);
€ Servicel is the random object instance that generates duration for the first server and
ilie is the method that always returns a new random value (here service duration)

d by linear interpolation. To generate random values the unit RANDOMS uses the
Turbo Pascal 7 random generator, but cach random object has its own current seed,

G4

_are used to obseive times spent at servers and the total time spent in the system. Each value is




6. Linked lists

In [4] there is a description of the unit SIMSET that declares objects Linkage, Head, and Link
intended to be as similar with the corresponding Simula objects as possible. There are the same
methods as in the Simula system class SimSet and few more because of Pascal limited
capabilities as an object oriented language. Nevertheless for the user the objects of the Pascal
unit SIMSET are used practically in the same way as the Simula objects. So for example when
firing of the transition (srenerator ends, that means an actual arrival of a customer, a customer
is created, the arrival time is recorded, and the customer is inserted to the first queue:

New(Cust,Init); Cust™ Arrival := PNTime; Cust® Into(Quel);

where Cus? is the customer object instance (descendant of Link), Init is its initialisation
method, Arrival is the attribute to store arrival time, /nfo i1s the SimSet like method to insert
- Cust at the end of Que !, that is the first queue (of the type Head).

Conclusion

Several discrete models have been created to check the usability of the package. The user

Pascal programs are all relatively very simple, no programming is necessary for timing and

‘synchronisation, for collecting and computing statistical data, for generating random numbers,

and for operations on linked lists. Most of the code are short snippets that activate methods of

objects. Appendix 1 is the complete text of both procedures that represent the user’s part of

model behaviour. Other procedures are relatively simple and what is more important, they can
~ bein all PetriSim user models very similar if not the same. The total length of the unit USER is
about 350 lines. PetriSim can be used in several ways both in research and education:

- as a graphical editor of Petri networks in all subjects and research projects related to this
topic (P-nets may be printed, captured, and processed by other graphical editors and/or
inserted to word documents - like the Figure 2 of this paper),

- as a user-friendly editor and simulator of Petri networks. P-nets may be created, stored in
disk, and simulated in various modes. So it is possible to study and analyse various
communication and synchronisation protocols and algorithms, e.g. in subjects and research
projects oriented to computer communication,

'S & general and user-friendly simulator of discrete systems. The only skills required are basic
deas of T-net principles and (not advanced) Turbo Pascal programming. So PetriSim
Combines the advantages of special purpose simulators (that are easy to use, but not general)
and discrete simulation languages (that are general, but learning them takes a lot of time and

€nergy).

! i?,ﬂY the most important disadvantage of PetriSim (and of the P-net based modelling as
.)_.ls the problem of modularity. Complex networks too big to be displayed on one screen
bff Sil‘pulated, but parts of them must be kept invisible (interconnection of places and
£:_10n§ Can still be displayed in tabular form). Better solution is splitting a complex network
te simple ones connected by special places and/or transitions. Object oriented nature of
M Supports this approach. Even now it is possible to work with many nets at a time
LIS in fact an object instance). This is the way to develop future versions of PetriSim.




- Appendix 1
Procedure UserFire(Var s : String); { Called when firing of a transition Starts }

Begin { s is the transition name }
If PNTime>MaxTime Then Terminate, { Experiment termination }
If s='Generator' Then { Generating interval between arrivals } %

FireDelay(Interval.RL Value)

Else If s='Servicel' Then Begin
S1.RUpdate(1); { Updating Server! status (I =working) }
Q1.RUpdate(MarkingOf('Queuel")); { Updating Queuel length }
S1Cust := CustP(Quel” First); { Starting service of the Ist customer in Queuel }
S1Cust™.Out; { Removing the first customer from Queuel }
FireDelay(Servicel RLValue); { Generating the service duration }

End{If}

Else If s='Service2' Then Begin { Similarly for the other two servers }
S2.RUpdate(1); Q2.RUpdate(MarkingOf('Queue2'));
E S2Cust := CustP(Que2” First); S2Cust”.Out;
I FireDelay(Service2. RLValue);
End{If}

Else If s='Service3' Then Begin
S3.RUpdate(1); Q3.RUpdate(MarkingOf('Queue3'));
S3Cust ;= CustP(Que3” First); S3Cust”.Out;
: FireDelay(Service3.RLValue);
End{If};

If Confir Then { Confir = true in the step mode }
Step('Starting Firing of ' +5) { Procedure Step supports the step mode }

Else Begin { Updating screen in fast mode }
GoToXY(5,6); Write('Current Time ="', PNTime:10:3);
GoToXY(5,9); Write('Number of customers served: °,

MarkingOf('Customers_2")+MarkingOf{'Customers_3"));
~ End{If};
‘End{UserFire};

Procedure UserEndFire(Var s : String); { Called when firing of a transition Lnds }
Var Ok : Boolean, { s is the transition name }

Jegin

- If s='Generator' Then Begin { This is the actual arrival )

Q1 RUpdate(MarkingOf('Queucl")); | Updating Quenel length }

New(Cust,Init); { Creating a customer }

Cust™ Arrival ;= PNTime; { Recording its arrival time }

Cust™.Into(Quel); { Inserting the new customer to Queuel }

End{if}

Else If s='Scrvicel' Then Begin { First service ends }
S.l._Rlde:llc(U)l { Updating Serverl status (0=idle) }
S1Time RUpdate(PNTime - S1Cust” Arrival):  { Collecting time spent at Server] )
B b PNTime; { Recording first end of xerviee }
{ Remclom switching: }
ot Ranidom~P1 Then Begin { Maoving to Quene.” |

SI2Cust = S1Cust: ChangeMarking('p3',0. OK): | Disabling 13 }
End

(6




Else Begin { Moving to Queune3 )

S13Cust := S1Cust; ChangeMarking('p2',0, OK); { Disabling 12 }

End{If};

If Not OK Then Begin { This should not happen! }
GoToXY(20,22), Write("Wrong name - press Enter'); ReadLn;
Terminate

End{If}

End{If}

Else If s='t2' Then Begin { Entering Queue?2 }
Q2 .RUpdate(MarkingOf('Quecue2’)); { Updating length of Queue? }
S12Cust”.Into(Que2) { Inserting the customer to Queue2 }
End{If} '

Else If s='t3' Then Begin { Lntering Queue3 }
Q3.RUpdate(MarkingOf('Qucuc3'));, { Updating length of Quenel3 )
S13Cust” Into(Que3) { Inserting the customer to Quene3 }

End{If}

Else If s='Service2' Then Begin { Service2 ends - customer leaves }
S2.RUpdate(0); { Updating Server2 status (0=idle) }
S2Time.RUpdate(PNTime - S2Cust” FirstEnd); { Collecting time spent at Server2 }
STime RUpdate(PNTime - S2Cust” Arrival); { Collecting total time spent }
Dispose(S2Cust); { Removing the customer from RAM }

End{1f}

Else If s='Service3' Then Begin { Service3 ends - customer leaves }

S3.RUpdate(0); { Updating Server3 status (0=idle) }
S3Time.RUpdate(PNTime - S3Cust” FirstEnd); { Collecting time spent at Server3 }

STime RUpdate(PNTime - S3Cust™ Arrival); { Collecting total time spent }
Dispose(S3Cust); { Removing the customer from RAM }

End{If}

If Confir Then { Confir = true in the step mode }
Step('Finishing Firing of ' +s) { Procedure Step supports the step mode }

~ End
End{UserEndFire} ;
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Abstract

The paper describes simulation in PetriSim environment. PetriSim is a general discrete
simulation tool of PC platform whose only requirement upon the user is accepting
Petri and Time networks as the system description tool. The graphical editor of
PetriSim offers a very fast and user friendly creation of the Petri network, that models
the basic logic and relationships in the model, especially cooperation and
synchronization of the activities. In the next step the user writes the aser code in the
Turbo Pascal 7 language (the implementation language of PetriSim) that implements
user specific aspects of model behavior and all operations on data that can not be
expressed by the Petri network. Also the time is introduced and so in fact the model’s
skeleton is a Time network based on firing duration concept (firing of transitions can
take any - possibly random - time, that is generated by the user). User code is located
in a Pascal unit, because Object Pascal does not have nested classes. In version 2 of
PetriSim the user code was written “off-line” using the Turbo Pascal Integrated
Development Environment (IDE). After creating some models it became obvious, that
a closer connection between the network (graph on the screen) and the code (text
editor window) will help a lot. In fact this is the basic idea of Visual Programming
tools like for example FoxPro screen editor, Visual Basic, or Delphi Pascal. The user

~ places an icon on the screen and can directly write a code snippet performed at some

kind of activation of the icon (for example after pressing the button icon). Because

activating of code snippets is associated with certain events (like pressing a button by
mouse), this way of programming 1 also called Event Driven Programming. These
ideas have now been implemented in PetriSim together with global modification of

: properties of Petri network objects using inheritance.

1, Introduction

Paradigm Oriented Simulation is based on a certain concept (abstraction, paradigm)
ated, as a base for creating the

E"{lliCh is used as a tool for describing the system simul
‘simulation model and as a support of other steps like model verification,

EXperimentation, documentation, etc. A commonly accepted tool for simulation of

discrete systems are Petri networks and especially their various modifications. Because

of limited scope of the paper, it is supposed, that the reader knows the very basic ideas

of Petri networks, that are summarized in [4]. For more details see [1] and [2]. One of

he Petri net based simulation tools is PetriSim. PetriSim has originally been created as
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a graphical editor and simulator of Petri networks - see [3]. After incorporating time by
the so called Time networks together with the possibility of wting user code
associated with events in the network, version 2 of PetriSim became a generator of
discrete simulation models based on Time networks paradigm, that /s the only (very
general) requirement on the way models are viewed and expressed by the user - see
[4]. Several models have been created to get some experience and to find PetriSim
drawbacks and limitations.

For example in [5] there is a brief description of a model of medinm complexity, that
simulates a packet switching computer with several input and output lines, randomly
generated paths of packets, and a limited number of memory buffers. The model
provides all typical outputs like statistics of queues, utilization of servers (sending
modules) and time spent by packets in the model. Similar results could be obtained
from a rather complex program written in a general high level language (like Pascal) or
' much simpler and shorter, but still not a trivial program written in a discrete simulation
language (like Simscript or Simulation of Simula). Using PetriSim the user has to write
' only few short snippets in Turbo Pascal expressing the model’s behavior together with
few procedures performing common things like reading system parameters,
initialization of supporting objects, and experiment evaluation.

The models created have proven, that in PetriSim simulation programs can be created
relatively fast without much programming, because the time control - the most difficult
part of discrete simulation - is included in the underlying Time network and does not
impose any requirements upon the user. The user just generates firing delays, that is
supported by a unit, that contains objects whose methods return random numbers with

 practically any distribution. Other units support working with statistically observed
variables and linked lists that model queues - see more details in [4].

2. Programming in PetriSim

The main feature of programming with PetriSim is Event Oriented approach. The user
writes a code that is associated with events in the Time network. The events involved
are starting and finishing firing of transitions. Another code is performed when the
‘_l??__iperiment starts (model initialization) and when the experiment ends (evaluation,
_VSplaying and storing results). This of course also needs some declaration of model
associated data - mostly instances of objects declared in the above mentioned units. So
the user code is made of a global part (associated with the model as such) and snippets
-:latgd to particular transitions. In version 2 of PetriSim, the user code was written off-
; _,B in TurbovP'asc-al IDE. This obviously involves frequent transfers between Pascal’s
fg- and PetriSim. PetriSim can be started directly from the IDE, but still the frequent
“ansfers caused inconvenience and what’s worse, the user might loose the connection
~Ween code snippets and Time network’s transitions. In fact to create the model it
5 ‘__“clrlm'ost necessary to print out the network graph and to use it as a reminder when
“8ing the Pascal snippets.
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To avoid these problems PetriSim has been further improved to make the relationship
between network events and code snippets directly visible. Clicking a network’s
transition by the right mouse button (its icon is a short thick line) opens a menu
window that enables direct writing of code snippets that are activated by starting or
finishing firing of the transition. Other global menu optioifs enable writing the

" initialization and the evaluation snippets related to the whole network. This is typical
for Visual Programming environments based on direct and clear association between
code snippets and graphical icons on the screen. PetriSim (so far) does not contain any
native text editor. The user can choose her/his favorite text editor that is activated from
PetriSim. This has brought another problem - the memory. In real mode Turbo Pascal
programs usually use only the conventional memory (640K). If there are many
memory resident programs in RAM together with PetriSim (about 250K) and a
reasonably sized heap (Turbo Pascal’s dynamically allocated memory), it might
happen, that some memory demanding editors can not be activated. This problem can
be solved in several ways. To allow future expansions of PetriSim that will be directed
to network modules and hierarchy, we are using now the Protected mode offered by
the Borland Pascal IDE. In this mode the whole memory is available.

3. Individualization of Object Instances.

The Object Oriented Programming (OOP) paradigm (including Super OOP) does not
address the problem of modifying object instances at code level. A class of a typical
QOP language declares a pattern that is used to generate instances that all have the
same code (methods and possibly life) and the same attributes (and possibly
parameters). (Note: because in Object Pascal object instances do not have life and
parameters, from now onwards we shall consider only methods and attributes.) The
only possible form of individualization of object instances is storing different values to
attributes and to test them and behave accordingly when performing the object’s

methods.

There is one exception (that I know) to this common OOP limitation - the LOGOS

language [6]. In LOGOS the instances have their own code generated from the
~ common pattern, that can be further edited. So the object instances generated
~ according to a certain class pattern can eventually behave completely differently, the
~ only common thing that is supposed to remain are fypes and names of attributes -
" otherwise the notion of a class would have no sense any more. This approach has
- Obvious negative consequences in the total amount of code and the host language

' LOGO prevents LOGOS to be used as an implementation tool of simulation packages
like PetriSim.

- Another case are “objects” of visual tools typical for database environments like
I{"oxPro screen editor and similar. These objects should not be considered as object
‘}.I_iStanccs in OOP sense, but there exist similar features. Some properties are cOmmon -
for example all Push Buttons look very similar, react upon the same events (pressing
F_mouse button) and can be modified by different labels, color, size and similar
dtributes. What is more important, they can have different associated code snippets
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that are written by the user. Typically such objects do not POSSESS inheritance
capabilities. So the notion of class is mostly not used with them at all.

So excluding LOGOS there are two extremes: not OOP “objects” of visual tools, that
all have (at least from user’s point of view) different code and QOP object instances,
that all have the same code and that can differ only in values of attributes. The
question is: do we need anything in between 7 After getting some experience from
PetriSim I am convinced, that a sort of hybrid would be very useful. First of all we
definitely need all features of OOP objects. That has been proven beyond any doubt
many times. But some individualization at code level would be also very useful. So far
the only behavioral individualization can be achieved by testing values of attributes by
code, that is the same for all instances. Let’s take the transitions of PetriSim.
Transitions (like other network components) are instances, that have been defined
(consecutively specialized) at three inheritance levels - see later. They have many
common features. They have the same type of icon, the same attributes like name,
screen position, size, color, etc. and the same methods like initialization, displaying
and clearing itself on the screen, testing if the transifion is enabled, etc. On the other
hand, from the modeling point of view, they represent various objects of the simulated
system and thus they might be (and are) supposed to behave differently. For example
starting firing that takes certain time can model a server of a queuing system. Starting
service may involve removing the first customer from certain associated queue
including updating the queue statistics, setting the server status to “working” also with
updating the statistics, and storing a pointer to the customer being served. All this is
application dependent. Some transitions (for example all servers) do practically the
same on different objects, some do things that are completely different. Still all of
them have many common things including methods.

PetriSim implements the code individualization of object instances (so far it seems to
‘be useful only for transitions) in the following way. Because the implementation
:%anguagc Turbo Pascal 7 obviously does not offer any direct support for this kind of
individualization, it has to be done “off-line” not using the OOP principles. This is of
course only an internal, implementation point of view. The user will see the modified
Code snippets as integral parts of the object instances. The implementation is
ightforward: When starting firing of a transition, PetriSim activates a procedure
two parameters: transition name and transition number. Transition number is
generated automatically when creating a transition and can not be modified by the
user. The procedure uses the transition number in a Case statement, that passes control
ditectly to code snippets that have been created by the user for particular transitions.

urse a code snippet can be empty. This is the basic idea that is explained in more

k- Snippets are written in the Turbo Pascal 7 language, that offers an elegant way
| '_‘]Ilcprporgte code into ready programs by the so called include files. There is
limitation - include files must contain complete routines. That’s why the simplest
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(I hope) solution is this: each object instance (transition) has two associated routines

 that contain the snippets activated when the firing of the transition starts and when the
firing ends. From Pascal’s point of view these routines are procedures without
parameters with default names. For a transition with number » the names are _PSn for

the starting snippet and _PEn for the ending snippet respectively. The procedures have

- no parameters because the user knows what transition the procedures belong to, the
[ procedures are not allowed to modify anything inside PetriSim, and any relation
between the transition and any kind of user data is completely the user’s responsibility.

Upon user’s request PetriSim generates default empty procedures that are supposed to
be modified (edited) by the user. In fact a procedure like the following one is
immediately after its creation displayed in the text editor’s screen:

Procedure PS1; ({ Starting snippet of the transition t1 (Senderl) }
g Begin
End,;

- Most of the snippet proccdure§ are very short because the user’s activity is typically

just activation of methods of supporting objects. Snippet procedures are called by
‘another automatically generated procedure like the following one, where the comments

in (* *) are not generated:

Procedure Firing Starts; { Starting snippets } |
{$1 %%S1.PAS Procedure PS1 }
{$1 %%S2.PAS Procedure PS2 }

etc.  (* One file for each procedure called in the procedure body *)

Begin
Case TNum of (* TNum is the transition number - global here *)
1: begin {Linel} (* Linel is the name of the transition *)
_PS1;
end;
2: begin {Line2}
_P32;
end;
etc.
End{Case}
End;

8]

= 400ve procedure is supposed to be called directly from the user’s procedure
upon the starting firing event (the only difference for the ending firing event is
“E” instead of “S” in the above names of procedures and files). This is the
S:IYI procedure distributed with PetriSim, that need not be modified in vser
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String; TNum Integer);

Including procedure Firing_Starts.

Begin
{ Here 1s the model specific behavior: }
Firing_Starts; { Don't change this line ! }

1f PNTime?MaxTime then Terminate;
Step('Starting Firing of ' + 5)

' PNTime:10:3);

= user defined procedure activated when the firing starts
procedure FiringEnds
= automatically generated procedure that calls
9%%S.PAS.

that returns the

value is read during experiment

course it is possible 0 modify
— PetriSim procedure that stops the exp
= User Boolean variable that defines the
the above procedure
displays the network in the current status

the
is typically selected by the user
that for the value false the procedure just displays

the current time on
simulation experiment.
displays the network in

procedure 15 supplie
Step mode is very useful and in fact represents a debugging tool that

works at highly symbolic network level.

: Actually all visual tools have to solve
en components, for which OOP does not offer an elegant solution.

with the number TNum. }
Don't change next line ! }

(similar

the firing ends).
the starting

is activated when
snippets. It

current time.

contain the duration of the

initialization, but of
the termination condition in any way.
eriment.

mode. If the value is true,

calls another generic procedure Step, that
(that contains

the network). The value of this
when starting the

that is supposed t0

future events in

the screen, that shows the progress of the

fhe current status (the
need not be modified).

d in generic form and

the problem of individualization of the
For example the
the problem in the following way- let’s say the
on the form Form! and defines the code to be

/
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performed when clicking the button by the mouse. As a result Delphi Pascal generates
code whose extract is this:

type TForml = class(TForm)
Buttonl: TButton;
procedure Button1Click(Sender: TObject);.

private
* { Private declarations }
public -
{ Public declarations }
end;

var Forml: TForml;

Note that the screen object Button! is an instance of the class TButton, but the
associated code snippet (procedure performed on clicking) is not its method. There is
no TButton'’s method Click, that might have been expected by an OOP enthusiast.
Instead, Delphi Pascal generates a method ButtoniClick of the subclass Tforml, that
from Pascal’s point of view has nothing common with Buttonl. The only common
thing is the same owner - the subclass Tform/. In fact the procedure is later declared as
TForml.ButtoniClick. So the association between Buttonl and ButtonlClick is done
off-line by the Delphi environment, not by the OOP facilities of the Delphi host
language Object Pascal. PetriSim applies a simpler approach based on include files,

" but like in Delphi, user modified snippets are related to the ob_]ects (events) only in

user’s mind, not at the host language level.

~ 5. Specialization of Network Components

1 Another way how to create user spec1ﬁc models is based on applying inheritance,

 because PetriSim has been created using consistently OOP facilities of the Turbo
Pascal 7 language. Basic network components like places, transitions, arcs, and
network as such are all classes that can be (and are) created in several (currently three)
nheritance steps, one of them being written by the user in the unit, that contains the
user specific code. So there are two ways how to incorporate specific features of
nSim user models: one based on inkeritance (more general), another based on
Individualization of object instances achieved by connecting user code snippets with
*Vents in particular instances (transitions). These two ways complement each other to
the user a power and flexibility in creating user models. Because inheritance
fies all comporents of the given class, it is primarily intended as an
entation tool that will be used to incorporate various high level network models

10ns to the original Petri networks).

L¥pical Screens

€ networks based simulation in PetriSim starts by creating a Time network whose
S timing and synchronization of all events in the model. The rest is done by
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outines that are activated by events in the Time network (starting and finishing

r ransitions) and also at the beginning and at the termination of the simulation
hat enables user initialization and user evaluation of the experiment. Figure 1

. Time network abstraction of a packet switching computer. The screen has
tured in the so called screen editing mode used to edit network properties. The
activated a menu, that contains these options: Unit globals (to be just
d) opens a text editor window with the whole file USER.PAS (the unit with
de). Here the user declares the user data and writes the initialization and the
n code. Generate is the option that generates the code related to user snippets
:bed in the above chapters. The options Starting snippets and Enrding snippets
- text cditor window with the include files that contain the procedures activating
ing and the ending snippets. These two options are used for debugging to
temporarily the activities connected with network events. Editing of these
cedures will be lost by next generating. The option Help explains the principles of
1o PetriSim user models.

een editing P-net Packets

[Unit globgls ]
¥
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Figure 1: Time network model of a packet switching computer

-

0 -?laces (Inl and LI) and the transition Linel in the upper left comer (the
_1.8 is not a part of the screen) model the arrival of packets from the Ist input
- The place /n/ is just a counter used to count the packets - each firing of Linel
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increments its initially zero marking by 1. The actual arrival is represented by finishing

firing of the transition Linel. A token is added to the place Requests that models

packets that have arrived and will be either stored or rejected if there is no free

memory buffer. Duration between two arrivals is represented by the firing delay of the

transition Linel. The token in the place L/ keeps the transitior“Linel firing until the
" experiment ends.

To get quantitative results from the model, these user defined data have been attached
to the network model: each packet is represented by a record that keeps the time the
packet has arrived (to compute the time spent in the system) and a randomly generated
destination. Packets waiting for RAM are stored in a queue called QI. Figure 2 is the
upper part of a screen captured after clicking the transition Linel by the right button.
This opens a menu with obvious options intended to modify transition properties. The
ast two options open a text editor window with the starting and the ending snippets.

screen editing P-net Packets

nl 1 . 0
°| 1 | E"' @estl
HEr 81 Sandaril

o Line — -
i Changa direction

Change nane )
o Change size ree_RAM o ; o . o
Change color Que2 g2 2Sender2 Dest2

(ﬁart in-_‘_ =n ippeil

Ending snippet Accept

Line

Figure 2: Creating snippets connected with the transition Linel

This is the starting snippet, that is shown in a text editor window immediately after
‘pressing the left button in the situation in Figure 2:
Procedure _PS1; {Starting snippet of the transition t1 (Linel)}
Begin
FireDelay(Line1.RLValue);

_ 2
: a t I . .: '53 I .Ioesta
Q Mts \ L Que3 £3 Sender3 1
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Procedure PE!; {Ending snippet of the transition t1 (Linel)}
Begin

New(Packet,Init); { Creating a packet }
Packet™.Arrival ;= PNTime; { Its arrival time }
Packet”.Dest := Linel1D.IValue; { Its random destination }
Packet”.Into(QI); { Entering Input Queue }

End;

A packet (Packet is a Link object with the same methods as the Link of Simset) is
created, the current time is stored in its attribute Arrival. Dest is its random destination

the number of the output line). Finally the packet is inserted to the queue (QI is a Head
object with the same properties as the Head of Simset).

After creating or editing snippets it is necessary to generate Pascal code. Then the user
leaves PetriSim to recompile the whole program. Each version of PetriSim
(PETRISIM.EXE) is one user model, that can be also used as a general editor and
simulator of Petri networks. User code is activated only during network Simulation in

the User experiment mode.

‘Conclusion

Creating simulation models in PetriSim is relatively easy and still there is no need to
learn a simulation language. That’s why it can be used especially for education, where
mastering a special simulation language during a one semester course is not
acceptable. The students can learn both discrete simulation as such and also the

principles of Petri network based modeling.
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Abstract

The ASU’96 paper “Discrete Simulation and Time Networks” has introduced the
second version of the simulation package PetriSim (written in the Turbo Pascal i
language) that contains a graphical editor of Petri Nets and that supports creation of s A
user defined simulation models based on the Time Nets paradigm. (Time Nets are
based on the original Petri Nets and their purpose is the introduction of time to network
models). The ASU’97 paper «Event Driven Visual Programming in PetriSim
Environment” dealt with direct association between network objects (Petri Net
transitions) and user code snippets, that is typical for Visual programming. It has
outlined a possible solution to the problem of “individualization” of object instances at
code level - at least from the user’s point of view, because existing Object Oriented
Languages don’t address this problem. So in the current version of PetriSim the user
can write simulation models that are originally expressed by the language of Petri Nets
and later modified by adding user code snippets modeling specific features of the

particular model. There is another possible way to specialize the original very general :J :
language of Petri Nets that itself has very limited modeling power. PetriSim is based 7
on Object Oriented capabilities of the host Turbo Pascal 7 language. All network g

objects (places, transitions, and arcs) are object instances whose classes (objects in
- Object Pascal terminology) are in fact written by the user. PetriSim contains generic
classes that implement the basic Petri Net behavior. The user's part of the model has to
contain declaration of subclasses, whose methods are actually used by PetriSim to
perform operations like testing if the transition is enabled or not and performing
- activities associated with occurrence (firing) of the transition. When starting work on
the model, there is a generic version of the unit User (the user’s part of the model), that
I_QD__r;t'ains degenerate versions of all methods, so a user’s model based only on the
F‘ginal Petri language will be very simple. On the other hand each user can implement
?.;’ -e}‘/his own modification of Petri Nets by writing appropriate methods. The above two
methods can be combined. User subclasses implement features common to all objects
‘.C&?r'tain type (such as all transitions). Code snippets associated to particular objects

) mplement the details of individual objects. The paper shows how these ideas were
d to implement nets with inhibitor arcs and nets for simulation of queuing networks.
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1. Introduction

Because of limited scope of the paper, it is supposed that the reader knows the basic
ideas of Petri Nets. The original Petri formalism (that is called today Place/Transition
or Pl/Tr Nets) represents an analytically very powerful graphical language with very
limited modeling power. There is no time, the only quantitative parameters are
numbers of tokens in places. That’s why there are very many various extensions - a
Jucid classification of Petri Nets based formalisms is [2]. Two examples of high level
Petri Nets are Coloured Nets and Queueing Nets. Coloured Nets - [3] represent a
general extension based on associating data with tokens that also makes it necessary to
generalize conditions that enable transitions to fire and the operations involved in
firing. Queueing Nets - [4] are more specialized. As the name says they are supposed
to be used in modeling of queuing systems. The basic idea is a complex place - node
that contains both a queue and the associated server(s). Both formalisms are supported
by software tools. There is one common problem (that also applies to other models) -
very complex definitions that make it very difficult to use these tools in simulation
practice. The purpose of these complex definitions is to keep Petri Net properties (that
are necessary if the tool is supposed to be used for system analysis and verification)
together with increasing modeling power (functionality). There is another trend:
attempts to combine Petri Net principles with the ideas of Object Oriented
Programming (OOP). One approach based on using Smalltalk is [5] that also contains
other references. PetriSim is another example of an approach how to combine Petri Net

“and OOP ideas.

2. PetriSim Networks

PetriSim is a simulation tool that uses Petri Net based language for system description
only, not for analysis and/or verification. There are three main reasons for this:

® First there are enough Petri Net tools that can be used for this purpose - see [6].-
® The second reason is based on the fact, that a “good™ Petri Net (that represents a
* certain simulated system) is a necessary but not sufficient condition that the model
is acceptable. A good Petri Net can represent a totally wrong system from the
simulation point of view. For example a system that differs significantly from the
part of objective reality that is being simulated.

'~ The third reason is practically unlimited freedom in increasing modeling power in
case of not insisting cn certain formal properties.

ON°t think there are any commonly accepted properties that have to be kept for a
ism to be still callzd “High Level Petri Net”. Fortunately PetriSim (so far) does
this problem - few simple extensions have increased the modeling power very
and the network model is still very close to the Pl/Tr Nets.

ntation of PetriSim networks is based on three classes (called “objects” in
€t Pascal) that represent knowledge of places, transitions and arcs (lines of any
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! shape connecting places and transition). The elementary knowledge on Pl/Tr Nets is
. stored in the Pascal unit Petri - see Appendix 1, where the underlined properties and
methods represent the formalism, the rest is used by the graphical editor and to support
simulation in various modes. There is only one extension to the basic PI/Tr model: the
firing duration. It can be used only in the so called user simulation mode where a user
code snippet can generate a time delay between removing tokens from input places and
adding tokens to output places of the transition. This is the way in which PetriSim
incorporates time to the networks. The properties and methods have self-explaining
names, those interested in details can download the source code from [7]. To enable
extensions of the elementary Pl/Tr Nets, PetriSim uses another unit called User, that
contains declaration of user classes UserPlace, UserTransition, UserArc that must
have (among others) exactly the same properties and methods as those listed in the
Appendix 1. So the basic inheritance hierarchy is this:

Y

PetriSim
Environment

BelEll o TEeEEE —| User H

Where the dashed line means any number of inheritance steps (written typically as

 Pascal units) that are supposed to add a certain functionality to the original classes, but
that will always keep the interface (thick line) needed by the PetriSim environment. So
there are two ways how to add functionality in PetriSim:

s User code snippets that can be associated to transitions. User code can be called at
‘ - the time when the firing of the particular transition starts and/or at the time when
- the firing of the particular transition ends. This itself represents a powerful
‘ simulation tool. For example the model described in [1] is based on this approach
only (user classes in the unit User are empty, with only inherited properties and
‘methods). All PetriSim simulation models need user code snippets, because this is

the way to generate firing duration.
'~ Classes increasing functionality of all network objects. Obviously these two ways

are supposed to be used together.

Nets with Inhibitor Arcs

S @ well-known problem associated with PI/Tr Nets - they are not able to test
2 place is empty or not. There are several ways how to tackle this problem -
Ost straightforward are the so called inhibitor arcs. These are input arcs to a
0 (with multiplicity 1) that unlike the normal arcs end by a small circle - see
le the arc from the place Q1Capacity to the transition New_lost in Figure 1
Xplained later). Then the necessary condition for the transition to be enabled
--that the place where the inhibitor arc starts is empty. A transition can have
H9er of normal and/or inhibitor input arcs. It has been shown that Pl/Tr Nets
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with inhibitor arcs (generally with the ability to test for zero) can simulate Tuﬁng '

machines. So we have a modeling tool that can model any system. Implementation of
Inhibitor arcs in PetriSim was very simple. A unit /nhibits is placed between Petri and

User: n

}

PetriSim
Environment

A 4
v

User

Petri _Inhib-its

It contains declaration of the classes that redeclare the methods AShow and 4Erase of
the arc and the method Enabled of the transition in obvious way. Inhibitor arcs have
the weight (multiplicity) zero which is the way how they are defined by the user. The
unit User in this case declares descendants of the classes declared in /nhibits. The
PetriSim environment does not see (and must not see) any difference. To make an
inhibitor arc, the user draws a normal arc and then sets its multiplicity to zero. By the
way, the multiplicity is integer, so it is possible to define practically any number of
other types of arcs using the negative values.

4. Queuning Networks

Queuing networks (made of more than one queues and associated servers) are typical
simulated systems because mathematical models of Queuing theory for networks are g
very limited. Almost all practical systems don’t satisfy the strong assumptions of |
Jackson and BCMP networks. Queueing Nets - [4] represent one approach how to
model queuing networks by High Level Petri Nets. PetriSim nets try to achieve similar '
functionality in much simpler and straightforward way (obviously by giving up the
analytical capabilities of the nets). The classes oriented to queuing networks are
declared in the unit Queuing:

Y

PetriSim [
Environment

v
v

v

Inhibits

Petri Queuing

User I

The classes of Queuing are subclasses of those declared in Inhibits because inhibitor \
arcs are very useful (they could have been descendents of basic classes of Pezri). Note i
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e Servers (with random service duration and the possibly to connect more servers to
one queue - multichannel servers)
o Decision points (where the customers take one of alternative routs).

Because of practical reasons it is also required (to simplify user code as much as
possible) that the objects automatically collect and compute basic statistical parameters
like statistics of queue lengths, utilization of servers and number of generated
customers. To make the PetriSim nets easy to understand the different types of objects
~ should also have different icons. Another requirement was the maximum possible use
of Petri Net graphical language, because some type of association is obvious - for
example place as a queue, transition (with firing delay) as a server. To model the above

well known pair place - transition working as a generator of tokens:

O=4——

After some experimentation a certain number of objects have been defined. Because
there is only one class of transitions and one class of places, different kinds of these
objects are distinguished by different values of their so called Type, that can be
changed by the user in PetriSim environment. Places and transitions are always created
with type zero, which means (from the user’s point of view) the original place and
transition as declared in the unit Petri. Some types of objects differ only in the icon,
have modified behavior. So for example the method 7Show that displays a
ition tests the value of the property TType and displays the icon according to its
ue. Similarly the method EndFire that normally adds tokens to all output places
the value of TType and in case of branching it adds token(s) to only one output
ce. PetriSim environment uses all methods in unified way as if there was no
rence between object instances. Currently there are these kinds of objects
ther with the standard place - circle and the standard transition - thick line):

0z , ,
Horizontal and vertical queues

Timed transition (with firing delay) -

Generator (here shown with a place necessary to start it)
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Ws2 Horizontal and vertical branching.

All places have marking statistics. This is implemented by another property, that is an
instance of a statistical object. At each updating of its value it computes the time
integral. This is then used by its methods that return the average, the maximum and the
minimum values, the variance and the standard deviation. Places have one more
method AddTokens that together with updating marking also updates this statistical
object. '

- Transitions keep their utilization (portion of time the firing was on) and the number of

completed firings. The former is a statistical object that is set to one when firing starts
and cleared to zero when firing ends. Average is then the utilization if the transition is
a server. Number of firings is a counter incremented by each firing completion. It is
used as a number of generated or served customers.
The only object with modified behavior is branching. It adds token(s) to one output
place only. There is an integer property Branch whose initial value is zero. In this case
the output arc/place is chosen randomly, all with the same probability. User code
activated at the end of firing can change the value of this property to implement any
kind of deterministic or not uniform random branching. PetriSim has a unit with
routines used to generate random numbers with theoretical and general distribution.
Routines of this unit are also used to generate firing delay.

S. Example Model

The system simulated expressed by a net in Figure 1 is a bank that operates in this way:
New customers wait in the queue Quewel with limited capacity, so they may be lost.
They are then served by a receptionist (transition Reception) and either leave
(probability 30%), proceed to the teller’s queue Queue?2, that also has limited capacity
(probability 60%) or proceed directly to the QOueue3 of unlimited capacity served by
tWo cashiers (transitions Cash/ and Cash2). Customers served by the teller (transition
I;Teller) either leave (probability 40%) or proceed to the cashiers (probability60%).
Clients enter directly the teller’s queue (if not full). Random intervals between arrivals
Of the two types of customers and random duration of all four servers are known.
Simulation is supposed to find numbers of lost and served customers, lengths of queues
and utilization of servers. Most constructs in Figure | are self-explaining. The two
fi€rators generate new customers and clients. The places pnc and pel just activate the
crators. Limited capacity of the two queues is modeled by tokens in places
@pacity and Q2Capacity respectively that also include the customer being served.
h customer entering the particular queue takes one token (by starting firing of tracc
fcacc respectively) and returns the token after being served (by finishing firing of
“C€ption or Teller respectively). If the queue is full, the inhibitor arcs enable the
Sitions New_lost or Cl_lost respectively that remove the customer from the system.
PPendix 2 contains all user code snippets (except experiment evaluation).
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Results are in Appendix 3. They are generated by a simple procedure (made of 47 :
lines) that repeatedly gets the statistics of objects and displays the value(s). For -
example the first line of the table with statistics of queues is generated by this code: z

PStatistics('Queuel',V,A,Max,Min,Va,Ss);
Writeln (R, 'Queuel '";A:14:3,Max:11:0);

e

Where PStatistics is a procedure (supplied with the generic version of the unit User)
that returns the current value (¥), the average (4) - here the average queue length, the
maximum, the minimum, the variance, and the standard deviation of the &narking of the
place whose name is the first parameter. Similarly the first line of the table with ) ‘
utilization of servers is generated by this code:

TR, Y R
A R i

Az

PR

TStatistics('Reception',U,N);
Writeln(R, 'Receptionist ',U*100:10:2,N:18);

Where TStatistics is a procedure (supplied with the generic version of the unit User)
that returns the utilization (U) and the number of firings (N) of the transition whose
- name is the first parameter. Appendix 3 contains data from two simulation runs that are
both 10000 time units (minutes) long. The first columns contain data for the system in
Figure 1. Note relatively big number of 90 lost clients. The second experiment tried to
find the necessary queue lengths for the bank not to loose any clients. So the capacities
of the two queues were increased to a very big number (10000) and the experiment was
repeated. The results are in the second columns. They show that the system is stable,
the only problem might be the teller's queue (maximum length 30). So the simulation
study would suggest adding one more teller.
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Queue3

|:| Cashl cashz

@:I_left

Figure 1: A bank modeled as a queuing network
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Conclusion

The example modél is not very complicated, but certainly not trivial. Still it was
relatively easy to create it - the Appendix 2 contains the whole user written code except
a simple procedure that displays the results. The results don't give time parameters (the
times spent in queues and in the system). To do this - like in the model in [1] - it would
be necessary to write user code to generate clients, to record arrival times, to move.
clients through the net and to compute the waiting times in appropriate points. All this
is not complicated in PetriSim, there are supporting units for all typical operations. The
purpose of this paper was to show how to use inheritance to increase functionality of a
formal modeling language in clear and well-organized way.
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A__E pendix 1: Basic PetriSim classes declared in the unit Petri

Xpos, Ypos, Size Position on the screen and size

Color, Mcolor Icon and marking colors

Marking Current marking (number of tokens)

OldMak Recorded marking (used for fast initialization)

Name, Ptype Place name and type (used later)

Plnit Place initialization (after creating or loading) :
PSimInit Initialization before simulation in user mode

Pshow, PErase Displaying/Erasing place on the screen
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PetriTransition Xpos, Ypos Position on the screen
Size, Color, Direct  Size, color, and direction (horizontal or vertical)
Name, TranNum, Ttype Transition name, number and type (used later)

Inlist, Outlist Lists of input and output arcs (tepology)
Firing, FireEnd Firing on/off, firing end time

Methods: Tinit Transition initialization (after creating or loading)
TSimlInit Initialization before simulation in user mode
Enabled Whether enabled or not (tests tokens in input places)
StartFire Activity when firing starts (remaves tokens)
EndFire Activity when firing ends (adds tokens)

Tshow, TErase Displaying/Erasing transition on the screen |
1
|
\
PetriArc (subclass of Poly) Place Pointer to the place 1

Transition Pointer to the transition
Weight Arc multiplicity (number of parallel arcs)

Methods: Ainit Arc initialization (after creating or loading)

: Ashow, AErase Displaying/Erasing arc on the screen
" Paly Corners List of corners on the screen (arc shape)

Color, Width, Style  Color, width, and style of the line

Methods: Init Polyline initialization (after creating or loading) -
Create, Destroy Create (draw)/Destroy (from RAM) the polyline
Show Display polyline on the screen

Appendix 2: User code snippets of the example model

Transition Firing Code Note

New Customers Starts - FireDelay(Normal3Sig(15,3))
Clients Starts’ FireDelay(Exponential(5))
Reception Starts FireDelay(UniformR(10,20))
Teller Starts FireDelay(Normal3Sig(4,1))
Cashl Starts FireDelay(Normal3Sig(10,3))

Cash2 Starts FireDelay(Normal3Sig(10,3))

Ends X := Random;
© If x<0.3 then t".Branch := 1 { 30% leave }
Else if x<0.4 then t*.Branch :=2 { 10% to cashiers }
Else t*.Branch := 3 { 60% to the teller }
Ends % := Random;
If x<0.4 then t*.Branch := 1 { 40% leave }
Else t*.Branch := 2 { 60% to cashiers }
UniformR(a,b) is the real uniform random number from a to &
Exponential(m) is the exponential random number with mean m
Normal3Sig(m,s) is the normal random variable with mean m and

standard deviation s limited in the range m + 35
is a local variable (declared by user)

t - is an automatically available reference to transition
object instance.
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PetriTransition Xpos, Ypos Position on the screen
Size, Color, Direct  Size, color, and direction (horizontal or vertical)
Name, TranNum, Ttype Transition name, number and type (used later)

Inlist, Outlist Lists of inpur and output arcs (topology)
| Firing, FireEnd Firing on/off, firing end time |
Methods: Tinit Transition initialization (after creating or loading)
: TSimlInit Initialization before simulation in user mode i
' Tshow, TErase Displaying/Erasing transition on the screen |
Enabled Whether enabled or not (tests tokens in input places) !
' StartFire Activity when firing starts (remaves tokens) |
EndFire Activity when firing ends (adds tokens) \
| PetriArc (subclass of Poly) Place Pointer to the place
| Transition Pointer to the transition
Weight Arc multiplicity (number of parallel arcs) ;
Methods: Ainit Arc initialization (after creating or loading)
Ashow, AErase Displaying/Erasing arc on the screen
" Poly Comers - List of corners on the screen (arc shape)
Color, Width, Style  Color, width, and style of the line
Methods: Init Polyline initialization (affer creating or loading) -
b s Create, Destroy Create (draw)/Destroy (from RAM) the polyline
Show Display polyline on the screen

Appendix 2: User code snippets of the example model

~ Transition Firing Code Note
 New Customers Starts FireDelay(Normal3Sig(15,3))
, Clients Starts FireDelay(Exponential(5))
Reception Starts FireDelay(UniformR(10,20))
: Teller Starts FireDelay(Normal3Sig(4,1))
Cashl Starts FireDelay(Normal3Sig(10,3))
-as Starts FireDelay(Normal3Sig(10,3))
Ends X := Random;
© Ifx<0.3 then t*.Branch := 1 { 30% leave }
Else if x<0.4 then t*.Branch :=2 { 10% to cashiers }
Else t*.Branch := 3 { 60% to the teller }
Ends x = Random;
If x<0.4 then t" .Branch := 1 { 40% leave }
Else t*.Branch := 2 { 60% to cashiers } i
UniformR(a,b) is the real uniform random number from a to &
Exponential(m) is the exponential random number with mean m
Normal3Sig(m,s) is the normal random variable with mean m and
standard deviation s limited in the range m % 3s
x is a local variable (declared by user)
£ - is an automatically available reference to transition .

object instance.
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NUMBERS:

Number of Arriving New Customers: 667
Number of Lost New Customers : 2
Number of Rejected New Customers: 193
Number of Arriving Clients : 2062
Number of Lost Clients : 90
Number of Clients leaving early : 938

Total number of Served Clients : 1493

STATISTICS OF QUEUES:

Queue Average length Maximum

Queuel 2421 5
Queue2 3.801 9
Queue3 0.366 4
UTILIZATION:

R Utilization [%] Customers

- Server

] Receptionist  99.43 661
93.88 2361
72.85 756
75.40 737

Appendix 3: Results of the example model

EXPERIMENT EVALUATION (Experiment Length = 10000)

-

Number of Arriving New Customers: 666
Number of Lost New Customers: 0
Number of Rejected New Customers: 198

Number of Arriving Clients : 2048
Number of Lost Clients : 0
Number of Clients leaving early : 951

Total number of Served Clients :. 1544

Queue Average length Maximum

Queuel 3.944 10
Queue2  7.609 30
Queue3 0.461 5

Server  Utilization [%] Customers

Receptionist ~ 99.46 663
Teller 97.39 2432
Cashier 1 76.79 769

Cashier 2 77.23 175
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‘ ABSTRACT

peiri networks and Queueing networks are two abstractions
| sed to represent and analyze large-scale distributed
stems. Though their basic ideas and objectives are
“ different, there are areas where a combination of these two
formalisms brings new ideas and methods of both
qualitative and quantitative nature. The principal problem is
the analysis of discrete distributed systems with delays,
services and queues that may be formally represented as
queueing networks. Mathematical models of queueing
networks are based on very strong, often unrealistic
assumptions. That’s why simulation is mostly the only
[easible quantitative analytical method. The paper shows
how to use Time Petri nets together with code in a high-
level language to create simulation models of queucing
networks. The method is especially suitable for education
plrposes because the only requirements are intermediate
q ogramming skills and basic knowledge of Petri nets.

INTRODUCTION

Ueing networks are abstract models of discrete
buted system in which it is possible to identify
s (customers) being processed/served by entities
1) with limited capacity. Waiting queues are thus
1ed. There are basically two classes of networks for
_€xact mathematical models exist — Jackson and
" networks. For details see for example (Chao et al.
oth of them are based on strong assumptions.
other methods, like various approximation
also exist, simulation is often the only feasible
how to obtain the required results. In fact
€ analysis of queueing systems was probably the
Ortant reason behind the boom of discrete
on languages in late sixties. There are two ways
te simulation models of queueing networks.
onal) approach is the programming of the
1 4 discrete simulation language. For models with
‘Fh?ng_ing structure and complex behavior of
i 1s probably the only acceptable way.
Iy we can use an existing simulator and enter
On of the network as its input data. If the input
ased on drawing the network on the screen
 Bmerical parameters of the components, the
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simulator is called “visual interactive simulation tool
(environment)” like for example Arena™™ or Extend™. An
on-line web hosted simulator described in (Sklenar 2001)
belongs into this category of simulation tools even if the
structure is not expressed graphically but in terms of
transition probabilities. Petri net based simulators can also
be put into this group of simulation tools. Software
packages that support work with Petri nets typically
contain processors (interpreters) of the partictilar Petri net
modification. What remains is the description of the
queueing network as a Petri net, supported by the tool.

Petri and Queueing Networks

The idea to model queueing networks as Petri nets is not
new. In fact there is a high level Petri net created just for
this purpose. The so-called Queueing Petri Nets (QPNs) -
see (Bause 1993) - are based on another high level Petri
net formalism called Coloured Petri Nets (CPNs) - see
{(Jensen 1998). The basic idea of QPN is the integration of
queues and servers into the so-called timed places, So a
timed place is basically a single queue multichannel
system with service time dependent on token’s =
customers’ color. Qualitative analysis is based on the
underlying coloured Petri net, where all timing aspects are
neglected. Qualitative analysis (like searching for
deadlocks) of queueing - networks is probably not as
important as it is in other areas of applications of Petri nets
like for example verification of protocols. Nevertheless it
represents a new tool in the analysis of queueing networks
brought by the combination of the two formalisms.
Quantitative analysis of QPNs is based on the analysis of
the underlying Markov process. Increased functionality
and modeling power of high-level Petri nets like QPNs and
CPNs is achieved by a (rather complicated) formal
generalization of tokens, places and transitions. There is an
alternative to this approach: keep the Petri net
specification as simple as possible; add functionality by
adding code in a high-level programming language. This is
the basic idea of PetriSim.

PETRISIM BASICS

PetriSim is a Petri nets tool that can be also used as a
generator of discrete simulation models. It is a tool
intended to be used especially in education. Originally it
has been created as an easy to use editor and simulator of
Petri nets. Then time has been incorporated to enable
working with the so-called Time nets. Today PetriSim is



an open tool with objects supporting the creation of
various Petri net based environments. The purpose of this
paper is the description of one such tool intended to be
used as a visual environment oriented to the simulation of
queueing networks. The motivation behind PetriSim
development was as follows: creation of discrete
simulation models for education in general high level
languages is too difficult; mastering simulation languages
takes quite a long time and thus can not be incorporated
into a one semester course. PetriSim is a free, easy to use
alternative to the professional visual simulation tools
mentioned above. Together with the creating of discrete
simulation models the students are also taught modeling
techniques based on Petri nets and their modifications.

PetriSim Networks

There are two languages that are used to create simulation
- models in PetriSim. First the Petri nets graphical language
- defines the basic structure and relationships in the model.
Details that cannot be incorporated in the Petri net model
are then expressed by Pascal (the host language of
PetriSim is Turbo/Borland Pascal 7). User’s Pascal code is
‘made of a number of very short snippets, because most
statements just call methods of objects supplied in
‘supporting units. The graphical language of Petri nets
-expresses the most difficult part of the discrete simulation:
-model timing and synchronization. The rest is intermediate
‘ascal programming, All that students have to learn are
ic ideas of Petri nets. Unlike other Petri nets based
00ls, PetriSim nets are very close to the basic
ransition nets - in fact the only extension is firing
ation that incorporates time, generalization of arcs and
ching transition — see later. So we call the nets Time
Firing duration together with Petri net topology
complex timing and synchronizing structures, that
normally programmed by special statements of discrete
ation languages. There are no complicated definitions
in most theoretical high-level Petri nets. Functionality
ead added by user code associated with transitions.
mplicity is possible, because PetriSim uses the Petri
4 descriptive tool only. There is no attempt to use
cal capabilities of Petri nets. PetriSim enables a
r-friendly creation, editing, and simulation of
Y any number of Petri nets at a time. Using the
10 draw on the screen performs most operations.
S ¢an be stored in a disk, they can be updated and
and so the user can work simultaneously on
~ Versions of one network model.

"8 User Pascal code into Petri nets is based on
d“{at_lt_m approach. For each transition the user
bility to add the so-called starting snippet
f°“‘: the firing starts (its typical use is for
Tation of random firing duration). The ending
“tvated when the firing ends (its typical use is
® branching at output and/or collecting

* Witing code snippets is done during network

editing — right click on a transition Opens a menu. 1y,
among others offers options to create or edi the twg
snippets. Their activation opens an editor (selected by the
user) with an automatically generated empty code (P:dscul
procedure). After creating all snippets the whole model
together with PetriSim has to be re-compiled which lakes
negligible time in today’s PC. Another code global 1o th;-
model contains all user-defined declarations together with
the model initialization and evaluation of the experimen;.
Most of the user code is the same in all models, sg creatiny
a new one often means just adding a few lines into generic
procedures. There are supporting Pascal units far
generation of random numbers, automatic collection yn
computation of statistics and work with linked lists,

Queuneing Networks Tool

Generic PetriSim classes are ihe Petri net place. the
transition and the arc. These classes implement the
functionality of Place/Transition nets together wiih
methods used by the PetriSim editor and simulator. Time
is also incorporated. By using inheritance it is possible 10
add more functionality that is necessary for examplc in
various high-level extensions to the basic Place/Transition

-model. First classes implementing Petri nets with inhibitar

and testing arcs have been added. These classes have then
been used as the super-classes specialized into classes
implementing a Petri net based tool for simulation of
queueing networks. When using the queueing networks
tool, places and transitions can be assigned a so-called
type that affects both functionality and appearance on the
screen. Icons try to follow conventions used to draw
queueing systems — see fig. 1. To simplify the user code as
much as possible, the objects automatically collect and
compute basic statistical parameters like statistics of the
queue length and the queue waiting time, utilization of
servers, statistics of firing duration and number of
performed firings. Four types of queueing networks
objects ‘are available: a place that represents a queue and
three transitions used to model generators of customers.
activity/delay (server), and branching. Next chapter shows
how to use PetriSim places and transitions to represent
basic types of single queue systems and how to combine
them into queueing networks.

PETRISIM MODELS OF QUEUEING SYSTEMS

Queueing theory texts start with the M/M/1 model. Firing
delay in PetriSim networks is program generated, so there
is no assumption about the distribution of imen'a!s
between arrivals and service duration. The basic model is
thus the G/G/1 model with one server, unlimited FCFS
queue, unlimited population and state independent randqm
distributions. Fig. 1 shows two versions of its PetriSim
model. First net is made of a standard generator of token:
= customers, a place = queue where the customers wal
and a transition that represents the service. The onl..‘
difference between the first net in fig. 1 and the basic
Place/Transition net is the firing delay generated by tht
code snippets. PetriSim procedure GGIReport writes the



results of the G/G/1 station to the text file R (it can be the
«creen). The text in bold is literally everything that the user
writes to create a G/G/1 simulator. The second net shows
jne use of PetriSim icons. Place and transition type is
selected by the user interactively together with other
qributes like size, color, etc. See also the use of the
«esting arc. For transitions with no firing delay a testing arc
s equivalent to a pair of arcs with the same endpoints and
nultiplicity but opposite directions. For delayed transitions
there is a difference: a testing arc does not remove tokens
from the input place, it just tests their presence. If a pair of
arcs IS used, the token(s) are removed when the firing
qarts and returned back at its completion. This may
obviously result ina different net behavior.
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Report (R, 'Queue’ , ' Service’); { output to R: }
‘on G/G/1 made of Queue & Service

length

age: 0.218 Min: 0.0 Max: 5.00 StdDev: 0.475
waiting time

: 1.09 Min: 0.0 Max: 19.42 Stdbev: 1.777
* utilization: 0.80

ce duration

4.006 Min:1.0024 Max:6.99 StdDev: 0.589
- System size: 10327

system wait: 5.096

Ve arrival rate: 0.1997

‘Figure 1: PetriSim G/G/1 Model

ueueing theory for M/M/1, the basic G/G/1
be generalized by relaxing some of its rather

Q

_itions = servers with generally different
ns. See the two servers of the limited

population model in fig. 3. PetriSim (so far) does not
support priorities of transitions. If there are more enabled
transitions, one of them is selected randomly (equal
probabilities). For a multichannel that means that the load
is distributed equally.

Limited Capacity Models

PetriSim does not limit the number of tokens in a place (it
is implcmented as a long integer with maximum value
close to 2x10°). Fig. 2 shows a solution by using inhibitor
and testing arcs. The transition Enqueue can fire if there is
a token in the place temp (arriving customer) and less than
10 tokens in the queue. System capacity is thus limited to
11. Rejected customers are removed (and counted) by the
transition Resign that needs 10 tokens in the queue t0 fire.
Fig. 2 also shows standard results supplied by PetriSim
with some rounding and less important figures removed to
fit in. The user code of the model in fig. 2 thus contains
just the snippets similar to those in fig. 1 (actually the only
difference is uniform input in [2,6]).
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: ESMEx3 Model: G/G/1/K model
100000.000
100000.365

Report on the net
Experiment duration:
Current time

Places:
Name Mean Min Max StD AvWait Max StD Added

Queue 4.865 0 10 2.81 189.63 48.88 11.66 24787
Activ. 1.000 1 10.00 0.00 ©0.00 0.00 0
temp 0.000 O 1 0.00 0.00 0.00 0.00 24976

Transitions:
Name Util. MeanFire Min Max StDev Firings

Arrival 1.00 4.004 2.00 6.00 1.154 24976
Service 0.99 4.004 1.01 7.00 0.991 24777
Resign 0.00 0.000 0.00 0.00 0.000 189
Engueue 0.00 0.000 0.00 0.00 0©.000 24787

Figure 2: PetriSim Limited Capacity Model
Limited Popﬁlation

Limited population models drop the assumption that the
arrival pattern is independent of the number of customers
in the system. A typical application is maintenance of a
small number of machines that break down randomly. First
it is necessary to define the mapping between the system
size and the arrival rate. The mathematical model of
limited population assumes that the intervals between



arrivals are equally exponentially distributed for all
customers with the mean interval equal to 1/A. Let M be
the total number of customers and let n be the current
system size (number of customers in). The arrival rate is
then equal to (M-m)A. The model in fig. 3 is based on this
assumption. The place Population contains the customers
that are out. The delayed transition Arrival delay generates
state dependent intervals between arrivals - see the code
snippet. The local variable mean is used to improve
readability. Starting snippets are activated after removing
tokens from input places. That’s why 1 has to be added to
the marking of the place Population obtained by the
PetriSim function MarkingOf. The arrival rate is 0.1 for
cach of the 10 customers, so the average interval (for
example mean time between failures) is 10 time units. If
all are out, the arrival rate to the system is 1. The two
servers have both normal service with mean 8, standard
deviation 2, limited to the interval [2,14]. The results show
that the load is distributed equally between the two servers
and both are fully utilized. Note that the average number
of customers out of the system (for example average
number of operational machines) is only 2.8.

L
I\H’f-___—‘hn Smruect
Aarrival delay 0”‘““!
Populat ton —
' Ieruvara

edure PS1;{Starting snippet of Arrival del.}
‘mean:real;

‘mean := 1/((MarkingOf ('Population')+1)*0.1);
- FireDelay (Exponential (mean)) ;

- on the net : ESMEx4 Model: G/G/1/inf/M
*nt duration:  100000.000
‘time § 100000.360

an Min Max StD AvWait Max StD Added

13 0 8 1.67 17.04 40.51 6.64 24727
0 10 1.76 11.432 B5.B5 7.37 24719

il. MeanFire Min Max StDev Firings
3.998 0.00 B86.23 5.266 24727
7.972 2.02 13.93 1.974 12379
7.989 2.04 13.91 1.971 12340

¢ 3: PetriSim Limited Population Model
éan of course easily express a more complex
¢en the system size and the arrival rate. The
d be its mathematical specification because
“ng  of non-Poisson input processes.
Y We can generate intervals between arrivals
Mer separately using any (for example

empirical) distribution. A Petri net model based on this
idea would need a delayed transition for each customer
that is feasible only for small number of customers.

Bulk Input and Bulk Service

Petri nets can easily model an input of batches of 3
constant size by increasing the multiplicity of arcs. The
situation is more complicated for random batches where
the batch size is a discrete random variable. In PetriSim
such models can be created, although the method is not
elegant and potentially dangerous. The PetriSim procedurc
ChangeMarking can be used to modify marking of any
place at any time. So for example the ending snippet of the
transition Arrival of the net in fig. 1 could be as follows;

Procedure _PEl; {Ending snippet of Arrivall
var OK:boolean;
Begin
ChangeMarking ( 'Queue', MarkingOf('Queue’')+
UniformI(1,5),0K);
End;

The procedure ChangeMarking should not be used unless
it is really necessary. If used, the user has to turn off the
collection of tokens waiting time that is implemented by
lists made of records with entry times. Similarly it is
possible to model a bulk service of random batches or 4
service of batches that are smaller than the standard size if
less tokens are available in the queue.

Classes and Priorities

In PetriSim it is not possible to assign priorities to tokens
or transitions. Fig. 4 shows a solution based on a
semaphore place and an inhibitor arc. There are high
priority customers generated by Arrivall and low priority
customers generated by Arrival2. A single server is
modeled by two transitions. Place 2_Off is a semaphore
that makes the firing of the two servers mutually
exclusive. Low priority Server2 can fire only if the high
priority Queuel is empty (inhibitor arc) and Server/ is
idle. Note that there is no preemption, the high priority
Server] waits until the low priority service is completed.
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Places:
Name Mean Min Max StD AvWait  Max BStD Added

Queuel 0.224 0 2 0.42 2.23 7.39 1.67 10041
Queue2 1.448 0 14 1.79 14.53 142.01 17.24 9968

Figure 4: PetriSim Model with Priorities




The results in fig. 4 were generated with uniform arrivals
in [5.15] both and a normal service with mean 4.8,
sandard deviation 1 for both priorities. A different
pehavior of the two queues is evident. Note that in the
model in fig.4 the two priorities can have different arrival
and service patterns. The model can also be used for two
classes of customers without priorities. After removing the
inhibitor arc the customers from the two queues will be
served randomly without any precedence.

- Networks

The elementary constructs described so far can be
combined into networks in an obvious way. So far
customers have vanished in servers. An output arc can be
used to move served customers into another queue, etc.
One problem remains to be solved: random movement of
customers. In PetriSim the problem is solved by the so-
ccalled branching transitions displayed as triangles — see the
net in the fig. 5.
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X := Random;
If x<0.6 then t”.Branch

1 {60% up}
~ Else t” .Branch 2

{40% down}

Figure 5: Network Model in PetriSim

T¢ is no difference between branching and other
itions with respect to input arcs. They can also
uce a delay. The difference is that after firing only
ltput arc is activated. The activated arc is supposed
e sel_ccted by the ending snippet like the one in fig. 5.
"~I€ 15 no user selection, the arc is selected by PetriSim
“omly (all outputs equally likely). So after firing the
“on Branchln the customer enters either Queuel
lity 0.6) or Queue? (probability 0.4). Similarly
‘he_service the customers either leave the system or
-~ “%AIn one of the two queues. To check the results,
“Mtial arrival intervals and service duration were
Sesults obtained from PetriSim simulation were very
© e figures computed for the Jackson network in
€ model in fig. 5 was also used to compare the
the PetriSim simulator with other simulation
B he same network model created in Extend™ is
* 1 fig. 6 where most icons are self-explaining. The
8t block is a plotter showing lengths of queues.

F |

Another model has been created by Arena™ and by the
JavaScript network simulator (Sklenar 2001) available at:
http:/istaff.um.edu.mt/jskil/simweb/ggs5/ggsSmain. html.
Numerically all the results were very similar and very
close to the theoretical figures.

=

s

Figure 6: Network Model in Extend ™

Table 1 shows the duration of an experiment of the length
200,000min. The average interval was 10min, average
service duration 4min and 3min respectively, all times
were exponential. Branching probabilities after service
(top down) were these: Branchl (0.3, 0.2, 0.5), Branch2
(0.4, 0.4. 0.2). These resulted in the average queue length
1.75 and the average wait 9.8min for Queue/ and 0.44 and
2.7min for Queue?.

Table 1: Speed of Queueing networks Simulators
Simulator | Arena'™ | Extend JavaScript | PetriSim
Time [s] 5 10 25 (IE 5) 13

Conclusion

PetriSim as an educational tool can help to teach both
discrete simulation as such together with principles of
modeling using Petri nets. It is a free tool available at:
htip://staff.um.edu.mt/jskll/petrisim/.
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Object Oriented Programming in JavaScript

Jaroslav Sklenar
Department of Statistics and Operations Research
University of Malta, Msida MSD 06, Malta
Web: http://staff.um.edu.mt/jskl1/
E-mail: jskl]l@stator.um.edu.mt

Abstract

JavaScript [1] is a scripting language intended to create dynamic interactive: web documents.
Together with HTML [2] JavaScript supports easy creation of documents with input and
output elements that enable user-friendly entering of validated data that can be further
pmcessed in the user's computer and then sent to the server or displayed by the browser. So
1he user of JavaScript and HTML has a tool that contains ready-made parts to design the user
interface. To process data a high level interpreted language is available. The paper explores
the JavaScript Prototype oriented paradigm from the Object Oriented Programming (OOP)
point of view. JavaScript is not a classical compiled strongly typed Object Oriented Language
(DOL), but it supports use of most important techniques typical for OOP. Moreover its loose
;._'mg offers some new possibilities like dynamic updating and/or addition of properties and

'g troduction

the name JavaScript (used in this paper) is owned by Netscape, Microsoft's implementation
language is called JScript. Fortunately both are more or less compatible and both are
sed to follow the European Computer Manufacturers Association standard ECMA-262
10262). JavaScript features described in this paper are based on behavior of interpreters
 two common browsers: Communicator 4 or higher and Internet Explorer 4 or higher.
are also valid for older versions and other browsers (like HotJava). Anyway, differences
en browsers exist, so it is suggested to check the HTML documents and associated
'pt code at least in these .two browsers. In spite of the beginning of its name,
ipt is not 2 version or modification of Java [3]. The only common thing is C/C++
Syntax, so it is better to consider Java and JavaScript as two different languages. In [4]
description of basic ideas of the JavaScript Prototype oriented paradigm that can be
an alternative to classical Class oriented paradigm of compiled OOLs in interpreted
ent that prevents early (compile time) binding and strong typing as such. Next
S give more details and suggest how to use prototypes to implement techniques of
ical OOP together with new techniques enabled by loose JavaScript typing.

*I¥thing is an object

Is would not call JavaScript an OOL, but in fact a JavaScript programmer works
bjects and their methods and properties. If not stated explicitly, properties mean
utes, but in JavaScript there is actually very little difference between value
Properties and procedure attributes - methods. Due to loose typing a property can

(V3]
n




become a method and vice versa. Most JavaScript “programs™ are short snippets incorporated
into HTML documents by using the tag <SCRIPT> that can also reference & separate file with
JavaScript code (default extension .js). JavaScript code is processed by the browser’s
interpreter as a part of the (re)loading process. Such code typically defines functions and
declares and initializes global variables. Using OOP terminology, such code is interpreted in
the context of the so-called global object. For each browser window or each frame within

window a separate global object is created. So for example a global variable declared by the
followmg statement:

var expduration = 1000; //default experiment duration

in fact creates (declares) a property of the global object that can be called directly by its name,
but also as this.expduration or window.expduration. The keyword this is a
reference (handle) of the current object. Similarly each global function declared by the user is
a method of the particular global object. All standard properties and functions are also pre-
defined properties of the global objects (for example mathematical functions and constants are
accessible through the Math object, that is an automatically created property of the global
object). What about the statements written directly in <SCRIPT> tags? Here the best analogy
is the “life” as defined for Simula class instances. There can be a lot of such code in several
<SCRIPT> tags and in js files. All this code is performed in lexical order as the life of the
global object (obviously without any possibility to break and postpone its execution).
Interpreted JavaScript has only run-time, compile-time does not exist. Still there are two
stages: (re)loading is a sort of early or first run-time stage. During this stage the programmer
creates all global data that includes “declaration™ of prototypes and creation of global object
instances. Second run-time stage is made of execution of functions activated by browser
events (like for example pressing a button). Even now, all is done in the context of the so-
called call object. Each activation of a function creates a separate call object, so declaration of
a local variable (say var x = 0;) in fact creates a property of the call object. Actual
parameters of the function call are also considered as properties of the call object (there is
another array property arguments that contains all parameters passed to the function, so in

JavaScript it is possible to write functions accepting varjable number of parameters - see
later).
v

3. Every function can be a constructor

“In JavaScript object instances are creatcd by the operator new similarly as in practically all
jEOLs: -

queue = new FifoQueue("gl”,0); // empty Qqueue

The difference between J a;vaScript and compiled OQOLs is that there is no class declaration. So
lhe constructor has a much more important role. Unlike constructors of compiled OOLs that
Oasically Just initialize the instance, JavaScript constructor actually creates (constructs) an
“iStance by creating its properties and possibly methods. There is no special keyword to write
Sonstructors, so each function can potentially be a constructor. We already know that for each

“vject and created object are really two distinct objects. For example consider the fallowling
- _ements anywhere in a function body:



var x = 1;
this.x = 2;
alert (x);

The value displayed will be 1 (property of the call object), alert (this.x) would display
2 (property of the created object). A constructor function is not supposed to return any value,
but it can. If it returns an object, the standard created object is ignored and the returned object
will be used instead. But there is more: in JavaScript each function is in fact represented by a
function object created during parsing a function. With respect to possible use of the function
as a constructor, let’s call this object constructor object or simply constructor. Unlike the
other two objects associated with a function (call and created objects) that exist only
temporarily during the function execution, constructor object is permanent (it is removed by
loading another document). Because it is an object, it can have properties and methods. The
most important one is profofype — see the next chapter. Using OOP terminology each
‘gonstructor (and so each function) has - or can have - the same role as class declaration in
compiled OOLs. Whether a particular function really represents a class depends only on its
body (constructors are supposed to create properties by statements like the above one:
this.x = 2;) and especially on its use after the new operator. Note that constructors can
create value properties and methods in unified way (example taken from [4]):

function point(xcoor, ycoor) |

this.x = xcoor;

this.y = ycoor;

this.shift = function(dx,dy) {this.x+=dx; this.y+= dy};
}

ote that all instances created by the above constructor will have its own code of the method
£t. The obvious requirement is a code stored only once for all instances. In JavaScript

Ototype properties and methods in the same way as its own private properties and
o0.m () activates the method m of the object o. It can be either private local method
instance or a prototype method common to all instances of the class o. Sharing
methods by all instances is no problem, but what about value properties? JavaScript
lashes and side-effects by making prototype value properties read-only. They are
and initialized at parse time, instances can only read their values. They can be useful
ants common to all instances. Creating prototype properties (not typical) and
~ methods thus completes the class definition. Let's summarize: each class is
°d by two permanent objects: constructor and prototype (comstructor's property) and
an be any number of instances that can have their own properties and methods and
© Access properties and methods of the two permanent objects. Using the prototype
S1 the class point can be implemented in this way:




function point (xcoor, ycoor) {
this.x = xcoor:;
this.y = ycoor;

}
point.prototype.shift = function(dx,dy) (-

this.x+=dx; this.y+=dy
}

Now the code of the method shift is stored only once with obvious consequence - after its
modification all instances will use the modified version.

- 5.Standard OOP techniques

The two previous chapters give a hint how to create the usual four types of properties and
methods associated with a certain class, see also [1]:

Instance value properties are created by the constructor (or by a function called by the
constructor — see later) using the handle this.

Instance methods can be created either directly by the constructor or preferably by the
prototype — see the two above examples.

Class value properties that are associated with the class as such, not with the individual
instances can be created as properties of the constructor:

point.count = 0; // number of created points

Class constants can be properties of either the constructor:

point.maxX = B800; // maximum x co-ordinate

or the prototype which ensures the read-only access:

point.prototype.maxX = 800; // maximum x co-ordinate

' methods associated with the class as such, not with the individual instances can be
ited as methods of the constructor: :

point.distance = function(pl,p2) {
var dx = pl.x - p2.X;
var dy = pl.y - p2.y;
return Math.sgrt (dx*dx + dy*dy)

that the above declaration is logical — distance applies to two points, so it is more natural
€ it as a class method and not as an instance method.




5.1 Inheritance

Let’s consider only instance value properties and instance methods and let’s create a subclass
colorpoint with one more property color and one more method changecolor.

Unfortunately we have to consider separately inheritance of value properties and inheritance
of methods.

Regarding value properties it is possible to repeat creation of superclass properties in the
subclass constructor. There are two reasons against this approach: first there is redundant code
and what's more important, any modification in the superclass must be repeated in all

subclasses with obvious danger of inconsistency. The solution is a function used both by the
superclass and the subclass:

function pointProperties(xcoor, ycoor,obj) {
obj.x = xXcoor;
obj.y = ycoor;
}
function point(initx,inity) {
pointProperties(initx, inity, this) :

}

function colorpointProperties (xcoor, ycoor,icolor,obj) {
pointProperties (xcoor, ycoor,obj); ‘
obj.color = icolor:;

}
function colorpoint(initx,inity,initcolor) {
colorpointProperties (initx, inity,initcolor, this)

£

theritance outlined in the previous example can continue — colorpoint can be used as
class etc. Note that in order to allow’inheritance, constructors just call functions that

Sieate the properties. Of course private methods can be inherited in the same way as value
properties.

Methods stored in prototypes can be inherited either by replacing the whole prototype object
by copying the methods. The first method can be used in our exemple in this way:

colorpoint.prototype = new point (0,0);
Colorpoint.prototype.changecolor = function(c) {
this.color = ¢ ' '
B

* ISt statement replaces the standard prototype by a point instance, the second statement
the new method. There are two flaws — first the new prototype has also the two value
PSTHES (x and ). It is not a mistake. Assuming that the constructor creates properties with
Dames, prototype read-only properties are not visible and the only problem is wasted
The second flaw is more serious. All prototypes have a property constructor
feference to the function object of the constructor function that has created this object.
Very useful to check types of instances (like “is” in Simula). Obviously by replacing
dard prototype by another object as in the above example, the constructor

Y also changes. To get exactly what we want, methods have to be copied from




superclass to subclass. The following function uses the fact, that objects in JavaScript can be
treated as associative arrays and a special form of the “for” statement based on this fact:

function inherit (from,to) {

for(var p in from.prototype)

if (typeof from.prototype(p] == "function")
to.prototype(p] = from.prototype[p]

}_ .

inherit (point, colorpoint);

colorpoint.prototype.changecolor = function(c) {
this.color = c

}i

The first statement copies all prototype methods, the second statement creates the new
method.

5.2 Polymorphism

Polymorphism is basically not compatible with strong typing. That's why classical compiled
OOLs introduce late binding through virtual methods that represents probably the most
complicated part of OOP. Note that Java does not have virtual methods, but it means that all
methods are in fact virtual. Programmer’s comfort is paid by time. Interpreted loosely typed
JavaScript is polymorphic by nature. Moreover polymorphism is not limited to inheritance
sequences. Consider the next two statements: p = %; p.m(); They will work for any
object x that has a method m. JavaScript does not perform any type check, everything is the
programmer’s responsibility. So the flexibility is paid by very limited security. That’s why
- JavaScript can not compete with classical OOLs in large projects.

6. Other techniques

. Interpreted JavaScript enables techniques not conceivable in compiled strongly typed OOLs.

Among others the following is possible:

Adding instance properties and methods can be a fast alternative to inheritance, especially

_ in case of small number of instances. At any time it is possible to create new properties and
‘methods: ‘

origin = new point(0,0);

p = new point(ix,iy);

p.d = point.distance (origin,p); //New property of p

p.dupdate = function() { //New method of p
this.d = point.distance(origin,this)

}i

lodification of instance properties and methods is also possible. It can be used for
&Xample as an alternative to status variables. Instead of testing a status, activate directly the
od that has been updated accordingly. It is also possible to change a method into a
Poperty and vice versa, but then they have to be treated accordingly.




Partial inheritance 1s a technique not allowed in OOLs. Nevertheless there are situations
when a simplified version of a certain class is required. I have used this technique in the
simulator of queueing networks to create a discrete random distribution object as a simplified
version of general random distribution object that has already been available. The point is
inheriting only some methods (obviously they must be self-sufficient). The following example
shows another version of the function inherit. It first tests the number of actual parameters
passed to it. If there are two parameters it copies all methods as in the above example.

QOtherwise it assumes that after the first two object parameters there is a list of strings — names
of methods to be copied:

function inherit (from,to) {

if (arguments.length == 2) { // Inherit all
for(var p in from.prototype)
if (typeof from.prototype(p] == "function")
to.prototype(p] = from.prototypel(p]l:
} else | // Irherit the listed methods
for (var i=2; i<arguments.length; i++) '
to.prototype[arguments[i]] = from.prototype[arguments[i]];

inherit (Distribution,DiscreteDistribution,

'fixtable', 'last', 'compareWithLastValue', 'showTable',
'accept', 'edit', 'insert',6 'deleteit', 'cleartable’,
'confirmtable', 'generate', 'save', 'load');

Only the 13 listed methods are inherited .

iEnce of the ASU: System Modelling Using Object Oriented Simulation and Analysis,
"Onfured 1999, pp 61 — 71.



Appendix: Multiple inheritance example

//=== FIFO Queue (Inherits from GenQueue and StatQueue)

function FifoQueueProperties(name,size,obj)
{ GenQueueProperties(name,size,obj);
StatQueueProperties (obj); {

obj.ghead = 0; // points to the first item
obj.qtail = 0; // points to first free slot
}
function FifoQueue (name, size) ({ // Constructor

FifoQueueProperties(name,size,this)

’

}

// "Inherited" methods:
inherit{GenQueue,FifoQueue);
inherit(StatQueue,FifoQueue);

// New FIFO Queue methods:
FifoQueue.prototype.initiate = function (size,time)
{ with (this) ({

setsize(size);

settime(time) ;

ghead = 0;
gtail = 0;
bhi
FifoQueue.prototype.enqueue = function (x) { with (this) {

if (full()) {

return false:

} else {

glength++;

garray(qgtail++] = x;

if (gtail == gsize) ( .gtail = 0 Vi // wrap around

Iff if (glength > maxglength) { maxglength = glength };

return true;

] bhi i

FifoQueue.prototype.removefirst = function () { with (this) [
if (empty()) {
return null;
} else {
glength--; var x = garray[ghead++]; // 1lst item
if (ghead == gsize) { ghead = 0 }; // wrap around

return x;
}
i

\
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Simulator of Queueing Networks
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Upstract

waScript [1] and HTML [2] are tools used for creation of dynamic interactive web
euments. Among others they support programming of forms - documents with input and
uiput elements that enable user-friendly entering of validated data that can be further
neessed in the user's computer and then sent to the server or displayed by the browser. So
waScript and HTML contain ready-made parts to design easily the user interface. To process
ua a high level interpreted language is available. Paper [3] explores the JavaScript prototype
nented paradigm from the Object Oriented Programming (OOP) point of view. To explare
wvaScript capabilities to create medium-size software tools, a simulator of queueing networks
i been implemented using exclusively JavaScript and HTML. The paper outlines the design
i the simulator from the OOP perspective. The results show clearly that JavaScript
terpreters of the two commonly used browsers (Communicator 4.7 and Internet Explorer
i) are fast enough to enable creation of web hosted non-trivial simulation models.

I .
LIntroduction

e paper [3] explains the basic ideas of the JavaScript prototype oriented paradigm. It can be
‘twed as an alternative to classical class oriented paradigm of compiled Object Oriented
#iguages (OOL) in interpreted environment that prevents early (compile time) binding and
0g typing as such. The paper [3] also suggests how to use JavaScript prototypes to
Blement all important techniques of classical OOP together with new techniques enabled by
e JavaScript typing. So even if terminology in JavaScript is sometimes different (for
*mple the keyword class does not exist), in the next chapters we shall use the standard OOP
finology because the OOP functionality can be implemented in JavaScript almost entirely.
Wy queueing networks?
le] , networks are maybe the most frequently simulated systems. There are results for
tical analysis of queueing networks — see for example the monograph [4], but still
ited. Many even simple practical situations can be described by queueing networks
 the analytical solution is not known. This is true especially for networks with other
Onential service times — in other words all practical cases. To create simulation
f queueing networks there are basically two feasible methods: writing a tailor-made
0 model in a discrete simulation language or similar tool (Simscript, class Simulation
€ic.) or creating a model by using a visual interactive simulation environment
, EXtend). The project that is being described in this paper belongs to the second
t was intended to create an easy to use interactive gemeral simulation tool
Simulation of networks with varying size and topology. The tool was created for
® Platform, so it is available literally to everyone connected to Internet. The only



requirement is a browser with an interpreter supporting JavaScript 1.2 (both common
browsers do). The first version of the simulator is rather limited, so it should be taken more as
an attempt to assess JavaScript abilities in this area than as a professional simulation tool.
Nevertheless it enables simulation of all networks that satisfy the following restrictions:

o There is only one class of customers. After generation a customer can randomly enter any
service station. After each service a customer can randomly enter another service station
or leave the network.

¢ Unlimited population is supposed (random intervals between arrivals do not depend on the
number of customers in the network).

e Simulation starts in time 0 by scheduling first arrivals for all generators. Initially all
service stations are empty.

 Service stations can have limited capacity. Customers entering a full station are lost (they
leave the network).

¢ Service stations are made of a possibly limited queue and any number of parallel identical
channels. Service duration is random, state independent. Queue discipline is either FIFO
or LIFO. Load among servers is distributed evenly (no results are available for individual
servers).

» Routing of customers is represented by random destination that exists for each generator
and for each service station. Destination is the service station number or 0 for the
environment respectively.

e Simulation experiment either takes a certain time or it can be terminated by some number

of generated and/or served (departed) customers. Out of these three conditions the one that
comes first is applied.

- The simulator gives all typical simulation results. Tables of user defined random distribution

can be used for both intervals between arrivals and service times. Next chapters give more
details.

3. Outline of the solution

' After some simplification and generalization we can identify two types of objects in queueing
networks: generators of customers and service stations. There can be practically any number
of both. The implementation platform (HTML & JavaScript) does not directly support
graphics. That's why it has been decided not to visualize the network topology automatically.
‘For networks where each generator can pass customers. to any service station and where
- Served customers can move to any further service the diagram is not very useful anyway.
There can be a lot of data for each generator and each service station. So the simulator always
SOOWs one generator, one service station, and global simulation results. For the selected
‘8nerator and service station the simulator displays the two distributions (interval between
Amivals or service duration and random departure destination), parameters, and simulation
Tesults. Optional report in a separate browser window contains summary of all results. The
Main brov/ser window is divided into the Control frame and the Network frame. The former

Dtains the elements used to enter global data (number of generators and number of servers)
14 to control simulation (experiment duration etc.). There are also selection lists, so it is very
1o switch among generators and service sta‘uons The network frame contains all the data




|, Network objects

fhis chapter lists the classes used to implement the network behavior from the user's point of
iew. Some classes declare attributes that are instances of other classes - for example every
fenerator has a property interval that is an instance of the class Distribution. As the name
uggests it supports entering, editing and generation of random intervals between arrivals into
fe network from this generator. This technique called composition (creating classes from
jther classes) is very common in OOP and very natural in JavaScript. Inheritance is also
sed, but it has . to be programmed - see more in [3]. JavaScript does not support nesting of
dasses in Simula sense.

ippendix 1 is the complete commented code that declares the class Generator. During
jmulation, instances of this class will generate customers with random intervals entering
{andomly various service stations. Note that "class declaration" in JavaScript has two parts:
ie so-called constructor function (whose name is the name=type of the class) creates value
gmbutes. It can also create methods, but these methods would be repeated in each instance.
That's why methods are usually implemented as properties of the so-called prototype, that is
utomatically created for each constructor function. Note how the constructor creates the two
lhject properties: interval and outpur together with initialization of their properties. The first

ﬁne is the random interval between arrivals. It can be either a theoretical distribution - the
gefault initial value is the exponential distribution with mean 1, or a user defined distribution
gven by an empirical table. The other distribution is a discrete user-defined distribution that
tlines random distribution of entering customers among network service stations. This
dstribution is initialized in such a way that the table contains one entry: value 1 with
fobability 1 (by default all customers proceed to the service station 1). The class
‘ * crereDistriburion has been declared as a simplification of the general class Distribution by

1]. Other value properties of the class Generator are the generator number (note how the
fmber is used to create unique names of the two distributions) and statistical parameters - see
Smments in Appendix 1. The class Generator has three methods: the method initialize() tests.
Miether user defined empirical tables (if used) have been confirmed. If not, simulation can not
4t The rest is initialization of statistics. The method nextarrival() schedules the arrival of

event - see chapter 5. The rest is updating statistics. The last method garrival() is the
outine activated by the simulation engine. It generates and checks the number of the

90 - the actual arrival to the station is implemented by the method sarrival(cust) of the
erver. Then the method schedules the next arrival.

*t Properties (service duration and random output) and a number of statistical parameters.
Bethods are these: initialize() - server initialization, sarrival(cust) - arrival of a customer,
“hdofservice(cust) - finishing the service of a customer. The code is too long to be
*ited here. In the method initialize() there are among others these statements:

if(queueorg == "FIFO") { // preparing queue/stack
. queue = new FifoQueue("queue"+name,0);
}else {

| qQueue = pew LifoQueue("stack"+name,0);

HSUC.initiate(x,0);  // x=queue size, time=0
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Note the polymorphic behavior, that is very natural in loosely typed interpreted languages like
JavaScript. The last statement would be correct for all queue objects with a method initiate
(number of parameters is not tested). Of course such flexibility is paid by very limited
security.

The last network class is Customer. So far it has only two value attributes: time of arrival to
the network and time of arrival to a service station. It is used to compute the time spent in the
network and the time spent in individual server stations.

5. Simulation engine

The simulator is based on classical event approach. There are in fact only two types of events:
customer arrival and end of service. The simulation control is implemented by two classes.
The instances of the class evnotice are event notices of the scheduled events. The class is
declared by the following self-explaining code:

function evnotice(s,c) { / next arrival or end of service
this.station =s; // generator/station number
this.cust = c; /I customer (null for generator)
this.key = 0; /I event time (set by schedule)

b

evnotice.prototype.schedule = function(tim) {
if (tim<time) tim=time; // cannot go back in time
this.key = tim; /[ event time
SQS.insert(this);  // enqueue

33

This simplicity is enabled by the fact that the simulator is not a general discrete-event
simulation tool by rather a special purpose simulator. The SQS is implemented as an instance
of the class Heap. In this context "heap" is a data structure, not a pool of dynamically
allocated memory. Heap is a balanced (ideally shaped) binary tree where for each node -
aSSummg ascending ordering - all its children have the key greater or equal than this node. So
itis guaranteed that the first item is always the smallest one. Unlike in a sorted tree, heap does
not keep any relationship between the siblings. The algorithms to insert 2 new item into a heap
‘and to remove the first one are both very simple and both have the performance O(logan)
‘Where # is the umber of items in the heap. So heap can be used as a host data structure to
implement a priority queue - fast and simple algorithms for both typical operations. For a
detailed description of heap algorithms see for example [5].

Appendix 2 is the main part of the simulation control function. It first calls the function
Initialization() that initializes all global variables and all network objects. For example
generators are initialized by the following code:

for (var i = 1; i <= numofgeners; i++) {
if (!generators[i].initialize()) {
return false;
}; // Scheduling first arrivals:
generators(i].nextarrival();



In the main loop the function Finish() tests whether the experiment is to be finished, SQS
should never be empty. If not, the first event is removed from SQS and an appropriate
generator Or service station is activated. The last statement in the loop updates the status bar of
the browser window.

6. Example simulation

Let's consider an abstraction of a certain commercial bank as outlined by the block diagram in
Figure 1 (in [6] there is a Petri net model of the same system).

Lost

i 30%
New Customers Receptionist

_(Generator 1)

(Server1) 10%
60% '
Lost l 60%
Y "y -'
Clients ———»  Tellers 1 40% Cashiers —
(Generator 2) _
(Server 2) (Server 3)

Figure 1: Queueing network abstraction of a bank operation.

The bank operates in this way: new customers wait in the receptionist's queue with the limited
‘capacity 6, so they may be lost. They are then served by a receptionist and either leave the
bank (30%), proceed to the tellers section queue, that also has limited capacity 10 (60%) or
proceed directly to the queue of unlimited capacity served by cashiers (10%). Customers
served by tellers either leave the bank (40%) or proceed to the cashiers section (60%). Clients
enter directly the tellers queue (if it is not full). Random intervals between arrivals of the two
types of customers are both exponential with the mean 15 minutes for new customers and 2
minutes for clients (busy period of the day). Random duration of all services are also known.
ﬁis--assumed that the receptionist serves the new customers with uniformly distributed time
fom 5 to 20 minutes. Service durations of tellers and cashiers are given by empirical tables
5 and 6 points respectively. The average duration is approximately 4 and 2.3 minutes.
nulation is supposed to find numbers of lost and served customers, lengths of queues, and
ation of servers for various numbers of tellers and cashiers. The purpose of the
lation study is to find such configuration that would minimize the number of lost
mers and the lengths of queues while keeping reasonable utilization of employees.

mode] described above has been created and tested in three different browsers using 2
L al desktop PC (PO 300MHz, 64MB RAM, W98). Always all tasks except the browser
f€re closed. The experiment duration was measured in the following way:

= new Date();

frames[1].Simulation();

new Date();

Duration in ms: '+(f1nish.getTime()—start.getTirne()));



The code is executed when pressing the Run button, so the time includes the experiment and
its evaluation (report in a separate browser window was not generated). The results are
summarized in the following table that gives experiment duration in seconds for various
model times and browsers. The system configuration was one receptionist, three tellers and
two cashiers that means 8 sources of events (two generators and together 6 service channels).
Note how a simple output to the status bar affects the experiment duration.

Model time [min]: 1000 10000 20000
IE 5.0 3.02 31.25 64.32
IE 5.0 (no status) W} 10.82 21.86
NC 4.7 5.22 53.22 107.66
NC 4.7 (no status) 1.92 20.48 41.75
HotJava 3.0 492 - -

HotJava port to PC has apparently problems with memory management, so the above table
should not be taken as the browser's assessment as such. Internet Explorer 5.0 has clearly the
fastest JavaScript interpreter (computation takes about 50% of the time needed by
Communicator 4.7 - for the status bar turned off). Anyway both browsers are stable during
simulation and the table shows that experiments with medium-size models are relatively very
fast. Note that experiments with model time 10000 minutes that represents about one month
of the bank's operation were completed in both browsers in less than one minute. Appendix 3

contains a part of a report taken from the browser's window (in this case IE 5.0) with results
rounded to 3 decimal places.

Conclusion

JavaScript can be used as a simulation tool. It supports all important techniques of OOP and
the interpreters are fast enough to perform experiments in acceptable time. JavaScript &
HTML is thus an ideal tool to produce documents that contain data processing (including
simulation) and that can be distributed to large number of users very fast using the web
platform. This is the basic idea of the IFORS (International Federation of Operational
Research Societies) initiative called tutORial project - for more details see
http://www.ifors.org/tutorial/ whose part is also the simulator described in this paper. It can

be also reached directly at: ‘
http://staff.um.edu.mt/jskil/simweb/netl/netmain.html.
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Appendix 1: Declaration of the class Generator.

function Generator(num) {  / Prototype function

this.number = num;

this.interval = new Distribution("i"+num);
this.interval.disttype = "Exp": /Default Exponential, Mean=1
this.interval.prompt] = "Mean"; ‘
this.interval.par] = 1:

this.output = new Di_screteDistribution('f go"+num);
this.output.xv[0] = 1;  // By default all to server 1
this.output.px[0] = 1;  // (value 1 with probability 1)
this.output.fx[0] = 1;
this.output.size =0;  // Last index (0 =1 entry)
this.output.status = "Table )
this.output.confirmed = true;

this.arrivals = Q; // Number of generated customers
~ this.intervals = 0; // Number of generated intervals
this.sumofint = 0; // Sum of arrival intervals

- this.mininterval = 0;  // Minimum Interval
this.maxinterval =0;  // Maximum Interval };
o Generator methods ........................

Generator. prototype. initialize = function (O { with (this) {

' i-f((interval.disnype="User")&&(!interval.conﬁnned)) {

- alert("Simulation can not start because the Distribution of "+
"intervals table of generator "+number+" is not confirmed.");
i }IEturn false;

if (loutput.confirmed) { .
alert("Simulation can not start because the Routing of "+
"arrivals table of generator "+number+" is not confirmed.");
[turn false;

= // Number of generated intervals
0; // Number of generated customers
‘ - =0 // Sum of arrival intervals -
Interva] = Number.POSITIVE_INFINITY;  // Minimum Interval
Xinterval = 0; // Maximum Interval




Generator.prototype.nextarrival = function () { with (this) {

intervals++; // Number of generated intervals
var inter = interval.generate(); // Interval
sumofint += inter; // Sum of arrival intervals

if (inter<mininterval) mininterval=inter; // Minimum Interval
if (inter>maxinterval) maxinterval=inter; // Maximum Interval
var ev = new evnotice(number,null); // Creating event notice
ev.schedule(time+inter); /l Scheduling arrival

¥

Generator.prototype.garrival = function () { with (this) {

var out = Math.round(output.generate()); // Generating server #

if ((out>0)&&(out<=numofservs)) { /l Existing server ?
armivals++; // Number of generated customers
netarrivals++;  // Total customers for the whole network
var cust = new Customer(time); /I Creating customer
servers[onut].sarrival(cust); // Moving to the server

|

nextarrival(); // Scheduling the next arrival

s

Appendix 2: Simulation control

function Simulation() {  // Simulation run
if (!Initialization()) {
return false; // Message shown during initialization
i -
var event = null;
var stat = 0;
~ var cus = null;
 while ((!Finish())&&(!SQS.empty())) {
‘event = SQS.getfirst(); / Next event notice
time = event.key;  // Updating time
stat = event.station; // Generator/Station number
Cus = event.cust;
if (cus==null) { /! Generator
~ generators(stat].garrival();
}else { /I Server
servers[stat].endofservice(cus);
- Status = "Running - Time: " + Math.round(time) + " of " +
rurlength;



Appendix 3: Part of a result report (tellers section of the bank example)

Server # 2
User defined service duration:
# x p(x) F(x)

00 0 0
11 0.05 0.05
2 2 0.1 0.15
33 0.3 0.45
4 4 0.2 0.65
510 0.35 1

Routing of departures:

#x o p() F(x)
00 04 0.4
13 06 1 !

Number of channels : 3
~ Queue capacity=10, FIFO organization

Number of arrivals : 5420

Number of not waiting arrivals : 2518 (46.46%)
Number of lost customers : 3 (0.06%)

Number of services : 5415

- Average service duration : 4.059
Muumum service duration : 0.006
Maximum service duration : 9.999

- Average waiting time : 1.795
Average non zero waiting time : 3.353

Maximum waiting time : 18.252

- Average time in server : 5.853

aximum queue length : 10
Utilization of server(s) : 0.733
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Abstract

JavaScript together with HTML support easy creation of documents that can contain user-
friendly input of validated data. The data can be then processed in the user's computer and the
results sent to the server or just displayed by the browser in lucid readable way. For data
processing JavaScript represents a high level interpreted language where all important ideas of
Object Oriented Programming (OOP) can be applied either directly or with minimum extra
effort. All solutions based on JavaScript and HTML are intended to be placed on the web and
made thus available literally to everybody who has a browser supporting particular versions of
these two languages. Latest versions of both common browsers (Microsoft Internet Explorer
and Netscape Communicator) are freely available for personal use, so web is a big uniform
environment ready to host resources of practically any kind. In this context several simulation
models have been implemented and placed on the web with rather encouraging response. This
paper describes a simulation engine that was written entirely in JavaScript and that together
with appropriate HTML documents supports a user-friendly development of web hosted
simulation models. Design of a simple simulation model is described to show the main ideas.

Speed of today’s computers and browsers enables simulation of medium size models in
reasonable time.

1. Introduction

The name JavaScript used in this paper is owned by Netscape, Microsoft's implementation of
the language is called JScript. Both are more or less compatible and both are supposed to
follow the standard ECMA-262 (ISO-10262). Anyway, differences between browsers exist, so

it is suggested to check the HTML documents and associated JavaScript code at least in the

two common browsers. Code presented in this paper works with IE 5.5 and NC 4.73.
Obviously explanation of JavaScript constructs is out of the scope of the paper, so if you are
not familiar with its basics see for example (Flanagan 1998). Note also that in spite of the
beginning of its name, JavaScript is not a version or modification of Java — see for example
(Eckel 1998). Papers (Sklenar 1999, 2000a) describe the basic ideas of the JavaScript
Prototype oriented paradigm, how to use all important techniques of OOP in JavaScript and
also some new techniques not available in strongly typed compiled Object Oriented Languages.
All these techniques have been used to create reusable code open to future expansion and
Modifications. The simulation engine described in this paper is made of a number of classes and
Toutines placed in several JavaScript source files (extension js). Next chapter deals with the

asic engine that implements the primitives of event based discrete simulation. The following
_chapter describes the simulation support facilities, in particular queues and transparent
Sollection of statistics. The last chapter is a simple simulation example.




2. Model Timing

Discrete simulation languages and tools are usually classified according to the way of model
time control The advanced process-oriented approach is difficult to implement. Also
JavaScript simulation will probably not be applied to large-scale systems. So the classical easy
to use and easy to learn event-oriented approach is probably the best choice. The basic ideas
are well known and can be found in most simulation textbooks — see for example (Zeigler
1984) and (Pidd 1998). Proper timing of events is implemented by a data structure containing
event notices ordered by the time of event occurrence in ascending order. To call it let’s use
the Simula name Sequencing Set (SQS). Simulation control routine repeatedly removes the
first event notice from SQS, copies the event occurrence time to the model time (typically a
global variable that can not be modified by the user), and activates a corresponding event
routine. There are two basic primitives for programming event-based models:

- Schedule an event at a certain time
- Cancel an already scheduled event.

2.1 8QS

From user’s point of view SQS is an ordered list. Linear oraered list with O(x) insertion time
would be too slow for bigger models with possibly many scheduled events. We need a fast data
structure with preferably O(log;n) speed of both basic operations: inserting and removing the
first item. Another natural requirement is dynamic size of the structure. JavaScript has dynamic
arrays, so to host SQS we use a heap'. Heap is a perfectly balanced binary tree stored in an
array with these properties assuming ascending ordering of items by a certain key:

- The root with minimum key is at the position 1,
- The two children of a node at position i are at the positions 2i and 2i+1,
- Both children have bigger (or equal) key than the parent.

Note that heap is not a sorted tree, the keys of the two children are not related. There can be
mostly one node with one child, all following nodes then have no children. Alternatively there
are nodes with two children followed by nodes with no children. Note that to compute the
location of a parent, the index of a child is just shifted by one bit to right. Let size be the
number of items in the heap (size+1 is the first free location). These are the simplified
‘algorithms of the two operations, for details see (Cormen et al. 1997).

Insert x to heap h // sift up operation
size <- size+l
i <- size
while (x.key < h{(i div 2).key) and (i>1)

h(i) <- h(i div 2) // move parent down
i < 4div 2

endwhile

h(i) <- x

.~ on terminology: The word “heap™ has double meaning. Usually it is a dynamically allocated part
. VL. In the context of data structures “heap” is a special type of a binary tree as described in this
PeT. Both interpretations are standard and should not be modified.




The algorithm starts in the first free position and moves up in the tree. If the parent has bigger
key than the new item, it is moved down. When smaller key or root are reached, the new item
is stored. The maximum number of steps is log,size rounded down.

Remove first item from heap h

first <- heap (1)

heap(1l) <- heap(size)

size <- size-1

while (there is a smaller child)
swap the parent and the child
move down

endwhile

return first

// sift down operation

The algorithm takes the first (smallest) item and moves the last item to its place. Then it moves
down in the tree. If the parent has bigger key than a child, they are swapped. When both
children (if any) are bigger or end of tree is reached, the movement stops. Again the maximum
number of steps is logysize rounded down.

Removing an item is more complicated. So far we use a simple not very fast approach
assuming that canceling an event is relatively rare. The heap is first searched linearly! for the
item to be removed. If found, it is replaced by the last item. Then it is necessary to restore heap
properties be sifting either up or down because there is no relation between last and
intermediate items that are not on the path from the last item up to the root.

Heap is implemented as a class with two value properties (array and size) and these methods:

empty () = test if the heap is empty,

clear () = deleting all items from memory (initialization),
insert (x) = inserting x to heap (using x.key),

remove (x) = removing x from heap,

restoreheap (i) = restoring heap properties from the position 7 down,
getfirst () =removing the first item.

Heap is used by the engine to host SQS, but in the model it can also be used as a priority
queue. Loose JavaScript typing allows storing various items in one queue. The only

requirement is that they all must have a value property key comparable by the < , > operators
of JavaScript (numbers or texts).

2.2 Simulation control

C basic simulation engine without supporting objects is made of three parts - two JavaScript
Source files and the user JavaScript code. The two files are:

-~ heap.js = heap implementation (see the previous chapter).
= engine.js = the simulation routines that use a heap as the SQS.

__.ese files have to be listed by two <SCRIPT> tags in the heading of the HTML document in

order. The user code can follow or (better) it can be placed into another JavaSript source
S). These are the basic ideas. During (re)loading of the document the engine creates two
vdl variables: fime and SQS (empty heap). Events are represented by event notices created
* ¢ user and stored in the SQS. Each event notice has a time of the event and any other



user-defined data. The time is set by the engine when the event is scheduled. After activation
the engine repeatedly removes the first event notice, updates the model time, and activates a
user routine that is given the reference to the event notice. Simulation ends by empty SQS or
by any user supplied condition. These are the Engine routines:

evnotice () is the event notice constructor. It returns an object with the time property, that
is used by the engine and should not be accessed by the user. The user can add any other

properties especially to distinguish between various types of events and to store any other
model dependent data.

initialize_run (debug) is a routine that clears the SQS (the previous experiment may
have finished with nonempty SQS) and sets the model time to zero. It should be called at
the beginning of the model initialization. If the Boolean parameter is true, simulation starts
in the debugging mode. Repeatedly after a certain number of debugging messages the user
can close the debugging mode and complete the experiment in fast mode.

schedule (event, tim) schedules the event whose notice is the first parameter at the time
given by the second parameter. The SQS contains the reference to the object instance, so
the same reference variable can be used to schedule more events, but all event notices have
to be created by the user. Scheduling is a fast insertion into a heap — balanced binary tree.

cancel (event) cancels a scheduled event. It first searches for the event notice sequentially.
If it is not found, the function returns false. Otherwise the event notice is removed from
SQS. This operation can be rather slow if there are many event notices in the SQS, but
canceling events is much less frequent than scheduling.

simulation_ run(stats,length) is the simulation experiment as such. This routine
should be called after the model initialization that has to schedule at least the first event.
More events can be scheduled later by other preceding events. The two parameters just

. affect the progress reporting. If the first parameter is true, the time will be reported in the
status bar of the browser. This is very time consuming, so turn it off for longer experiments.
‘The second parameter is the expected duration of the experiment. It is shown in the status

~ bar together with time to see the relative progress of the experiment. Nevertheless the
experiment can finish earlier or later. This routine ends by reaching the empty SQS or by the
user supplied condition - see the routine finish_run().

The above routines are common to all simulation models. Model specific behavior is
implemented by two routines that have to be supplied together with code (preferably also a
‘-")Iltlne) that starts simulation. These are the routines that represent the user’s part of
Simulation control.

'-finish_run () tests whether simulation should be terminated. It is called by the engine after
Updating the model time just before activating the next user event. It can just test the time
against the experiment duration, it can }mplement a more complicated terminating condition
(for example finish the experiment after serving a certain number of customers, etc.) or it
‘an be empty (just return false). In the last case the run will be finished by the empty SQS.

Ventroutine (event) is activated by the engine. The routine is given the reference to the
' Svent notice that has been removed from the SQS. The rest is the user's responsibility.



Typically there will be some properties created by the user used to switch between various
types of events. It might be a good idea to keep this routine short and simple and to write
routines for various types of events. These routines will then be called from a switch
statement testing the event type property of the event notice.

Starting simulation also has to be programmed. For example it can be a function

activated by pressing a button “Run”. This code is supposed to perform the following four
activities in the same order:

— Initialization of the Engine by initialize run (debug),
— Model specific initialization,
— Starting simulation by simulation run(stats,length),

— Model specific experiment evaluation (that can be alternatively performed by an event
scheduled at the required experiment termination time).

3. Simulation support

Model timing is only one of many supporting facilities that are supposed to be included in
event-oriented discrete simulation tools:

— Time control

— Generation of (pseudo)random numbers

— Automatic collection of statistical data

— Statistical .analysis

— Report generation _

— Facilities for work with high-level data structures (queues)
— Control over the dynamically allocated memory

- Good diagnostics and debugging facilities

Time control has been described in the previous chapter. Generation of random numbers is so
far based on the standard JavaScript generator Math.random () together with few routines
that generate random numbers with exponential, uniform, and normal distribution. Future
expansion in this area is supposed. Report generation is solved naturally by the HTML part of
the model. JavaScript code just updates the values in the HTML generated layout. There is no
need to control the dynamically allocated memory because JavaScript's garbage collector
automatically recovers lost memory (familiar situation for a Simula programmer). Debugging is
currently a problem unless there is the Microsoft Development Studio installed. Otherwise the
basic tool is the function alert (message) that stops temporarily the interpreter and displays
uﬁhﬁ message. A function is supplied (together with few other useful functions for common use)
that creates and displays a string with names and values of all properties of an object. Next we

shall deal briefly with classes that implement queues and transparent collection and
Computation of statistical data.



3.1 Queues

The paper (Sklenar 2000a) shows how to program multiple inheritance in JavaScript and in the
Appendix there is the complete code that implements the FIFO queue. Properties and methods
of the FIFO queue are inherited from two superclasses:

— Generic queue is the basic queue implemented in an array. It can just test if it is full or
empty and it can fix its size.
— Statistic queue is able to keep the time integrals of its length and of the square of its

length. Methods are available to compute the average queue length, the variance, and
the standard deviation. '

These two queues do not implement any particular insertion and removing operations. They
are implemented as additional methods of the FIFO queue. FIFO queue implementation is
based on a circular list within an array. The result is a queue with three methods: initialization,
adding a new item at the end, removing the first item. Keeping and updating statistics is
transparent for the user, at the end of the experiment the results (maximum length, average
length, variance, standard deviation) are just used - for example displayed in the HTML
document. LIFO queue (stack) is also implemented, so together with heap based priority queue
there are all three standard queueing methods. So far items can not be removed from FIFO and
LIFO queues, so impatient customers are not supported.

3.2 Statistics

Some discrete simulation tools contain transparent collection of statistical data together with
automatic computation of statistical parameters. This very user-friendly feature can be found
for example in SIMSCRIPT II where it is based on the so-called left monitoring. Left
monitoring means that if a certain variable (declared to be monitored on the left) appears on
the left side of an assignment, a special routine is activated before the actual storing of the
right hand side value. This routine is given the value to be stored and can modify it or just use
it to update statistics. The second is done automatically in SIMSCRIPT II for all statistically
observed variables’. Inspired by this tool two classes of statistically observed numbers have
been declared: accumulator and tally.

Accumulator class takes into account time. It is in fact similar to the observation of a queue
length. Accumulator can be for example the number of working machines. Accumulator keeps

automatically the time integrals of its value and of the square of its value. Work with
accumulators is done by these methods:

initiate (x) prepares accumulation and stores the initial value. The method is supposed to
be called during model initialization.

Updateto (newx) has to be used instead of assignment by the “=> operator. It updates the
integrals and stores the new value. There is a similar meihod updateby (delta) with
Increment as its parameter.

—

? Thanks go to Eugene Kindler who gave me a copy of the article (McNeley 1968) that contains
EPTObably the first description of these ideas. There the left monitoring is called store association. It is
Nteresting that during the discussion O.J.Dahl has suggested an implementation based on class methods
88 described in this paper (wheel re-invented again).




Another three methods are available to get the time average, the variance, and the standard
deviation. Three value properties contain the current, the minimum, and the maximum values.

Tally class is similar, but time is not taken into account. It can be used for example to get
statistics on the time spent in a queue. Here the statistics is based only on the values assigned
to the particular variable. The methods are similar to the ones of accumulate, but there is only

one update (newx). The value properties are the minimum and the maximum values and the
number of updates.

Using accumulators and tallies is simple. First they are created and initialized. Then instead of

JavaScript assignment by "=" they have to be updated by calling the updating methods. At the
end the results are just accessed and used (displayed).

4. Example simulation

Simulation models based on the engine are made of an HTML document that contains script
- tags referencing the supplied js files and model specific JavaScript code. As an example this

chapter describes a simple simulation experiment. The simulated system is a queueing system
defined as follows:

- Exponential arrival of customers from an unlimited population, one class of customers.
- Unlimited FIFO queue.

- One server with normally distributed service duration.

- The server breaks down randomly with exponentially distributed intervals between failures.
- Uniformly distributed repair time.

- Customer whose service is interrupted is after the repair served agam.

The system is kept simple intentionally to concentrate on the use of the engine and not on the
model specific details. Many assumptions can be easily relaxed. The required outputs are:

- Numbers of arrivals and failures.

- Average and maximum waiting time.

- Average, minimum and maximum time spent in the system.
- Average and maximum queue length.

The simulation model is in the Appendix. Commented user JavaScript code is included in the
HTML document, alternatively it can be placed into another js file. HTML code is kept as
simple as possible, nevertheless the interface is user-friendly. Most of the JavaScript code can
Pe used in other models with minimum changes, because the model specific behavior is
mplemented by the four event routines. You can visit the author's page to try the model in
Your browser. You can also download the js files to create models locally. Hint: try to modify
the model in order to find the utilization of the server (portion of the time when the server was
Working). For this purpose use another accumulator with two possible values: 1 when the
Server works, 0 when it is idle or under repair. Its average is then the utilization.

3. Conclusion

q?VaScﬁpt programmers can use the engine described in this paper to create web hosted
ulation models. Bigger models than the simple one described in chapter 4 will just contain



_ore event routines and more model parameters, the basic principles of simulation remain the
, It might be interesting to find out how big models can still be successfully simulated by
cript. Note that during long simulation experiments the browser may display a message
there is a long script running and whether to continue (IE 5.5). Just click yes. The author
very appreciate all comments and suggestions especially regarding possible improvements
engine. More examples will be provided in future, the simulation support is under
nanent development. So consider visiting the author's page to learn about updates.
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Appendix: Example simulation (a complete HTML document with JavaSript code).

<HTML><HEAD>

<TITLE>Exzample Simulation in JavaScript #2</TITLE>

<SCRIPT LANGUAGE="JavaScript" SRC="utilities.js"></SCRIPT>
<SCRIPT LBNGUAGE="JavaScript"” SRC="heap.js"></SCRIPT>
<SCRIPT LANGUAGE="JavaScript" SRC="engine.js"></SCRIPT>
<SCRIPT LANGUAGE="JavaScript" SRC="statist.js"></SCRIPT>
<SCRIPT LANGUAGE="JavaScript" SRC="queuesm.js"></SCRIPT>
<SCRIPT LANGUAGE="JavaScript" SRC="randvar.js"></SCRIPT>
<SCRIPT LANGUAGE="JavaScript">

//******************** USER SIMULATION ROUTINES kkkhkhkhkdkhhhkhkhhkdhdhhdbdddddtdtrdd

function finish_run() { // Whether to finish the simulation run
return (time>runlength); // has to be supplied
)i
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function eventroutine(event) { // The event routine (must be supplied)
switch (event.eventtype) { // switching between 4 types of events
case 1: 3
arrival(); break;
case 2:
end of service(); break;
case 3:
breakdown(); break;
case 4:
end of repair(); break;
default: L
alert ("Wrong eventtype: " + event.eventtype);
}:
}:
] l/ Event routines
function arrival() { // customer arriwval
arrivalst+;
var cust = new customer (time); // creating the customer

var ev = null;
if ((served==null)&&(serverOK)) {// can start service ?
served = cust; // yes
waittime.update(0);
ev = new evnotice(); // scheduling end of service
ev.eventtype = 2;
served.event = ev;
schedule (ev, time + normal pos (meanservice, serviceStd));
} else {
queue.engueue (cust); // no - enqueue the customer
}:
ev = new evnotice(); // scheduling next arrival
ev.eventtype = 1;

schedule (ev,time + exponential (meaninterwval));

function end of service() { // service ends
systemtime.update (time - served.nettimein);
served=null;
if (!queue.empty()) { // queue empty ?
served = queue.removefirst(); // no - serve the lst one
waittime.update(time - served.nettimein);




var ev = new evnotice():; // scheduling end of service
ev.eventtype = 2;

served.event = ev;

schedule (ev, time + normal_pos(meanservice,servicestd)};

--------------------------------------------

function breakdown() { // server failure
failures++;
serverOK = false;
if (served!=null) { // service on ?
cancel (served.event); // yes - cancel it
}:
var ev = new evnotice(); // scheduling end of repair
ev.eventtype = 4;
schedule (ev, time + uniform(repairfrom, repairto));

function end_of repair() { // server repaired

serverQOK = true;

var ev = new evnotice(); // scheduling next failure

ev.eventtype = 3;

schedule (ev, time + exponential (meanbreakinterval)):;

if ((served==null)&é&(!queue.empty())) { // new service can start ?
served = queue.removefirst(); // yes - serve the lst one
wailttime.update (time - served.nettimein);

if (served!=null) { // starting service ? (new or old)
ev = new evnotice(); // scheduling end of service
ev.eventtype = 2;
served.event = ev;
schedule (ev, time + normal*pos(meanservice,servicestd));
Yi
}:

// i .

function set parameters() |{ // Copying model & control parameters
meaninterval = parseFloat (doc.Ill.value); // mean arrival interval
meanservice = parseFloat (doc.I2l.value); // mean service duration

serviceStd = parseFloat (doc.I22.value); // service standard deviation
meanbreakinterval = parseFloat(doc.I3l.value);// mean failures interval
repairfrom = parseFloat (doc.I4l.value); // minimum repair time
repairto = parseFloat (doc.I42.value); // maximum repair time
runlength = parseFloat (doc.CIl.value); // length of the experiment

}i
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function evaluation() { // Experiment evaluation

doc.Rl.value = arrivals;
doc.R2.value waittime.average () ;

doc.R3.value = waittime.max;
doc.R4.value = systemtime.average();
doc.R5.value = systemtime.min:
doc.R6.value = systemtime.max;
doc.R7.value = gqueue.average();
doc.RB.value = gueue.maxglength;
doc.R9.value = failures;




function simulation() { // Simulatiom experiment
doc = document.forms[0];
initialize run(doc.CI3.checked); // This prepares the engine
set_parameters(); // Model & Control parameters
// Model & statistics initialization
queue.initiate(1000,0);
served = null;
serverQK = true;
arrivals = 0;
failures = 0;
waittime.initiate();
systemtime.initiate();
// Preparation - at least one event has to be scheduled:
var ev = new evnotice(); // Scheduling 1lst arrival
ev.eventtype = 1;
schedule (ev, exponential (meaninterval));
ev = new evnotice(): // Scheduling 1lst failure
ev.eventtype = 3;
schedule (ev, exponential (meanbreakinterval));
// This starts the simulation:
simulation_run(doc.CI2.checked, runlength);

evaluation(); // Experiment evaluation

bi
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function customer (tim) { // customer constructor
this.nettimein = tim; // time of entering system
this.event = null; // end of service event notice

}:

iyl Head Code (creating global variables) -

// Model parameters

var meaninterval = 0; _ // mean interval between arrivals

var meanservice = 0; // mean service duration

var serviceStd = 0; // service standard deviation

var meanbreakinterval = 0; // mean interval between failures

var repairfrom = 0; // minimum repair time

var repairto = 0; // maximum repair time

// Model objects
var queue = new FifoQueue('Q',1000); // the queue

var served = null; // served customer

var serverOK = true; // server status

// Control parameters

var runlength = 0; // length of the experiment
// Statistics

var waittime = new tally(); // waiting time

var systemtime = new tally():; // system time

var arrivals = 0; // # of arrivals

var failures = 0; // # of failures

// Buxiliary

var doc = null; // to access document objects
/Y

</SCRIPT>

</HERD>

<BODY BGCOLOR="#000000" TEXT="#00ff00" LINK="#ffff00">
<FORM NAME="tester">
<CENTER>




<Hl1>JavaScript Simulation Engine - Example Simulation #2</H1></CENTER>

<H3><B>Model Parameters:</B></H3>

(All times in minutes)

<TABLE BORDER>

<TR>

<TD>Exponential intervals between arrivals</TD>

<TD>Mean: &nbsp; <INPUT TYPE="text" NAME="I11" SIZE=5 VALUE="5"></TD>
<TD></TD>

</TR>

<TR>

<TD>Normal service duration</TD>

<TD>Mean: &nbsp; <INPUT TYPE="text" NAME="I21" SIZE=5 VALUE="4"></TD>
<TD>Std:&nbsp; <INPUT TYPE="text" NAME="IZ22" SIZE=5 VALUE="2"></TD>
</TR>

<TR>

<TD>Exponential interval between failures</TD>

<TD>Mean: &nbsp; <INPUT TYPE="text" NAME="I31" SIZE=5 VALUE="20"></TD>
<TD></TD>

</TR>

<TR>

<TD>Uniform repair time</TD>

<TD>From: &nbsp; <INPUT TYPE="text" NAME="I41" SIZE=5 VALUE="1"></TD>

<TD>To: &nbsp; <INPUT TYPE="text" NAME="T42" SIZE=5 VALUE="10"></TD>
</TR>

</TABLE>

<P><HR>

<H3><B>Simulation Control:</B></H3>

Experiment Duration:é&nbsp;<INPUT TYPE="text" NAME="CI1"™ SIZE=5 VALUE="100">
&nbsp; &nbsp; &nbsp; &nbsp;

Show Status:&nbsp;<INPUT TYPE="checkbox" NAME="CI2" CHECKED>

&nbsp; &nbsp; &nbsp; &nbsp;

Debugging: &nbsp; <INPUT TYPE="checkbox" NAME="CI3">

&nbsp; &nbsp; &nbsp; &nbsp;

<INPUT TYPE="button" VALUE="&nbsp;Run&nbsp;" NAME="CB1"
onClick="simuilation()">

<P><HR>
<H3><B>Results:</B></H3>

{TABLE BORDER>

<TR>

<TD> Number of arrivals </TD>

<TD> <INPUT TYPE="text" NAME="R1"™ SIZE=25> </TD>

<TD ALIGN="CENTER"> <INPUT TYPE="button" VALUE="Note" NAME="RB1"

onClick="alert ('Total number of arrivals to the system.')"></TD>
</TR>

<TR>

<TD> Average waiting time </TD>

<TD> <INPUT TYPE="text" NAME="R2" SIZE=25> </TD>

<TD ALIGN="CENTER"> <INPUT TYPE="button" VALUE="Note" NAME="RB2"
onClick="alert ('Average time spent in the gueue till first start of

service.')"></TD>

</TR>

<TR>

<TD> Maximum waiting time </TD>

<TD> <INPUT TYPE="text" NAME="R3" SIZE=25> </TD>

<TD ALIGN="CENTER"> <INPUT TYPE="button" VALUE="Note" NAME="RB3"
onClick="alert ('Maximum time spent in the queue till first start of

service. ') "></TD>

</TR>

<TR>

<TD> Average time in system </TD>




<TD> <INPUT TYPE="text" NAME="R4" SIZE=25> </TD>

<TD ALIGN="CENTER"> <INPUT TYPE="button" VALUE="Note" NAME="RB4"
onClick="alert ('Average time spent in the system. ') "></TD>

</TR>

<TR>

<TD> Minimum time in system </TD>

<TD> <INPUT TYPE="text" NAME="R5" SIZE=25> </TD>

<TD ALIGN="CENTER"> <INPUT TYPE="button" VALUE="Note" NAME="RB5"
onClick="alert ('Minimum time spent in the system. Note that minimum

waiting time is zero.')"></TD>

</TR>

<TR>

<TD> Maximum time in system </TD>

<TD> <INPUT TYPE="text" NAME="R6" SIZE=25> </TD>

<TD BLIGN="CENTER"> <INPUT TYPE="button" VALUE="Note" NAME="RB6&"
onClick="alert ('Maximum time spent in the system. ') "></TD>

</TR>

<TR>

<TD> Average gueue length </TD>

<TD> <INPUT TYPE="text" NAME="R7" SIZE=25> </TD>

<TD ALIGN="CENTER"> <INPUT TYPE="button" VALUE="Note" NAME="RB7"
onClick="alert ('Average queue length including time when it was

empty."')"></TD>

</TR>

<TR>

<TD> Maximum queue length </TD>

<TD> <INPUT TYPE="text" NAME="R8" SIZE=25> </TD>

<TD ALIGN="CENTER"> <INPUT TYPE="button" VALUE="Note" NAME="REB"
onClick="alert { 'Maximum reached length of the gqueue (must be less than

1000) . ') "></TD>

</TR> .

<TR>

<TD> Number of failures </TD>

. <TD> <INPUT TYPE="text" NAME="RO" SIZE=25> </TD>

<TD ALIGN="CENTER"> <INPUT TYPE="button" VALUE=“NOte" NAME="RB9"
onClick="alert ('Number of server failures.')"></TD>

</TR>

</TABLE>

<P><HR>
</FORM>< /BODY></HTML>
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Abstract

JavaScript is a high-level interpreted language where all important principles and techniques
of Object Oriented Programming can be applied either directly or with minimum extra
programming effort. Together with HTML JavaScript supports creation of documents that can
contain user-friendly input of validated data, data processing and lucid presentation of outputs.
Solutions based on JavaScript and HTML are intended to be placed on the web and made thus
available literally to everybody who has a browser supporting particular versions of these two
languages. These capabilities can be applied to create various web-hosted problem-solving
tools. Some of them can contain simple and medium-scale simulation models. Several
simulation models have already been implemented and placed on the web with rather
encouraging response. A simple event oriented simulation engine written entirely in
JavaScript was implemented and made available for download. The paper describes its use to
build simulation models in JavaScript with special emphasis on their link to corresponding
HTML documents in order to simplify programming as much as possible. Design of a
simulation model of a general single queue system is used to demonstrate the main ideas.

Introduction

The papers (Sklenar 1999, 2000) describe the basic ideas of the JavaScript! prototype oriented
paradigm, how to use all important techniques of Object Oriented Programming (OOP) in
JavaScript and also some new techniques not available in strongly typed compiled Object
Oriented Languages (OOL). In particular the programmed inheritance as defined in the paper
(Sklenar 2000) enables creation of “subclasses™ that inherit only selected methods of the
superclass. Thus we can create simplified versions of general superclasses. All these
techniques can be used to create reusable code open to future expansion and modifications. In
other words in an interpreted JavaScript environment with loose typing we can use the
techmques typical for classical compiled strongly typed OOLs like for example Simula or
Java®. The paper (Sklenar 2001) deals with the implementation of a simulation engine that
was written entirely in JavaScript and that together with appropriate HTML documents
supports a user-friendly development of web hosted tools that contain simple and medium
scale simulation models. The engine is based on the classical event-oriented approach with
two primitives: schedule an event at a certain time and cancel a scheduled event. These
primitives are implemented as calls to routines with appropriate parameters. Other routines are

' The name JavaScript used in this paper is owned by Netscape, Microsoft's implementation of the
language is called JScript. Both are more or less compatible and both are supposed to follow the
standard ECMA-262 (ISO-10262). Anyway, differences between browsers exist, so it is suggested to
check the HTML documents and associated script code at least in the two common browsers.

? Note that in spite of the similar C-based syntax, Java and JavaScript should be considered as two
different high-level languages.




available in order to prepare the simulation experiment, to start the simulation and to create
event notices. These routines are imported by JavaScript source files (extension js) listed in
the heading of the HTML document. Simulation support facilities are also available, in
particular generation of random numbers, work with queues and transparent collection and
computation of statistics. Visit the following page to read a simple manual and to download
the engine: http://staff.um.edu.mt/jskil/simweb/engine/engman.html. This paper will
concentrate on the use of the engine and how to link it with the HTML document in order to
simplify programming of web hosted simulation models.

The Engine

This chapter summarizes the basic ideas without implementation details. During (re)loading
of the document the engine creates two global variables: the time and the empty SQS. Events
are represented by event notices created by the user and stored in the SQS. Each event notice
has a time of the event and any other user-defined data. The time is assigned by the engine
when the event is scheduled. After activation the engine repeatedly removes the first event
notice, vpdates the model time, and activates a user routine that is given the reference to the

event notice. Simulation ends by the empty SQS or by any user supplied condition. These are
the Engine routines:

| evnotice() is the event notice constructor. It returns an object with the time property, that is
used later by the engine and should not be accessed by the user. The user can add any other

| properties especially to distinguish between various types of events and to store any other
model dependent data.

initialize run() is a routine that clears the SQS (the previous experiment may have
finished with nonempty SQS) and sets the model time to zero. It should be called at the
beginning of the model initialization.

schedule (event, tim) schedules the event whose notice is the first parameter at the time

given by the second parameter. The SQS contains the reference to the object instance that
l}as to be created by the user.

cancel (event) cancels a scheduled event. If the event is not scheduled, the function returns
false. Otherwise the event notice is removed from SQS.

simulation run(stats,length) starts the simulation experiment. This routine should
be called after the model initialization that has to schedule at least the first event. More
events can be scheduled later by other preceding events. The two parameters just affect the
progress reporting. If the first parameter is true, the time will be reported in the status bar
of the browser. The second parameter is the expected duration of the experiment. It is
shown in the status bar together with the time to see the relative progress of the
expcriment. Nevertheless the experiment can finish earlier or later. This routine ends by
reaching the empty SQS or by the user supplied terminating condition - see the routine
finish run().

The above routines are common to all simulation models. Model specific behavior is
implemented by two routines that have to be supplied together with the code (preferably also a




routine) that starts simulation. These are the routines that represent the user’s part of the
simulation control. The examples are taken from the model outlined later.

finish run() tests whether simulation should be terminated. It is called by the engine after
updating the model time just before activating the next user event. It can just test the time
against the experiment duration, it can implement a more complicated terminating
condition (for example te finish the experiment after serving a certain number of
customers) or it can be empty (just return false). In the last case the run will be finished by
the empty SQS. The following is the function of a model where the experiment is finished
by either reaching its maximum duration runlength or by serving a certain number
(numofecsert) of customers. If this value is 0, the criterion is ignored :

function finish run() { // Whether to finish simulatiom run
if (numofcserf == 0) {
return (times>runlength)
] else { .
return (timesrunlength) || (numofcser >= numofcserf)
bi | ,
bi !

eventroutine (event) is activated by the engine. The routine is given the reference to the
event notice that has been removed from the SQS. The rest is the user's responsibility.
Typically there will be some properties created by the user used to switch between various
types of events. It might be a good idea to keep this routine short and simple and to write
routines for- various types of events. These routines will then be called from a switch

statement testing the event type property of the event notice. The following is the function
of a model with two types of events:

function eventroutine(event) { // The event routine
switch (event.eventtype) { // switching between types of events

case l:

next arrival(); break;
case 2:

end of service(event.servnum) ; break;
default: '

alert ("Wrong eventtype: " + event.eventtype) ;
i

Vi

Starting simulation also has to be programmed. For example it can be a function

activated by pressing a button “Run”. This code is supposed to perform the following four
activities in the same order:

— Initialization of the Engine by initialize run(),

— Model specific initialization,

— Starting simulation by simulation run(stats,length),

— Model specific experiment evaluation (that can be alternatively performed by an event
scheduled at the required experiment termination time).

The following is the function activated by pressing the button Run and its link to HTML:

<INPUT TYPE="button" VALUE="Run" onClick="simulation()">
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function simulation/() { // Simulatiom experiment

}s

if ((arrival.disttype == "User") && ! (arrival.confirmed)) ({
alert("Can't start simulation. Arrival intervals table has
not been confirmed.");
return false;

bi |

// Similar tests for other tables

initialize run(); // This prepares the engine
initialization() ; // Model & statistics initialization
var ev = new evnotice(); // Scheduling first arrival
ev.eventtype = 1; // User defined property

var X = arrival.generate();// Generation of first interval
intstat.update (x) ; // Arrival interval statistics
schedule (ev, time + x); // Scheduling the first event
simulation run(showstatus,runlength); // Start the experiment
evaluation () ; // Experiment evaluation

The user routines perform the tasks typical for event-oriented simulation, their description is
out of the scope of the paper.

Simulation Support

In addition to timing there are other typical facilities that are supposed to be included in a
user-friendly discrete simulation tool. This chapter lists them together with their
implementation in the JavaScript simulation tool dealt with in this paper.

Generation of (pseudo)random numbers is implemented by rather complex classes that
declare objects that are basically random numbers with either theoretical or empirical
(user-defined) distribution. User-friendly input of the cumulative distribution function
table is supported.

Automatic collection of statistical data and Statistical analysis is implemented by the
classes. Accumulator and Tally (Simscript II'™ terminology is used). They differ in

» time treatment. Tally ignores the time; the statistics is based on the collection of

assigned numbers. Accumulator statistics is based on time integrals. Basically they are
real variables with transparent collection of statistics’. The consequence for the user is

the assignment. The usual a = x  has to be replaced by a method call
a.updateto (x).

Validated input and report generation makes use of the capabilities of the HTML
language. HTML forms are intended to collect data entered by the user, to validate
them at user side and to send the results to the server. The last step is skipped, the data
is used instead during the simulation experiment. Similarly at experiment evaluation
the results can be displayed in form elements and/or written as a text into a separate

i Simseript II'™ calls this mechanism left monitoring. It is based on the idea suggested by McNeley
N’ho used the name store association. By coincidence the paper (McNeley 1968) was presented at the
Same conference where Simula was introduced. It is interesting that during the discussion O.J.Dahl
jias suggested an alternative implementation based on class methods as described in this paper (this
?735 not known to me until I have finished my implementation).
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browser window to be used later. Links between JavaScript objects and HTML code
are outlined in the next chapter.

— Facilities for work with high-level data structures (queues) are represented by three
types of queues: FIFO, LIFO and priority queue that is based on a data structure called
heap that is also used to implement SQS. For details see (Sklenar 2001). The first two
queues use multiple inheritance (that can be programmed in JavaScript) to gel
properties and methods of a generic queue and a statistically observed queue. Then
they implement their own methods based on linked lists.

Linking Objects to HTML Code

The following is an example of a validated input. The global variable numofcserf contains
the number of customers to be served during the experiment or 0 if not used. Note that after a
modification there is a test whether the text can be parsed into a non-negative integer that is
then displayed. The old value is displayed alternatively. It might be a good idea to derive the
name of the form object from the name of the variable (here by adding “in”) to avoid
confusion of names. The following HTML fragment generates a table row with a label
(prompt), the text entry field and a help button that shows text in an alert window.

<TR>
<TID> Number of served customers </TD>
<TD><INPUT TYPE="text" NAME="numofcserfin" SIZE=10 VALUE="Q"
ONCHANGE="1f (testNonNegIntValue (numofcserfin.value))
{numofcserf = parselnt (numofcserfin.value) };

numofcserfin.value = numofcserf"></TD>
<TD ALIGN="CENTER">

<INPUT TYPE="button" VALUE="Help"

onClick="alert ('You can terminate the experiment e 0 V) Ve TDs
</TR>

‘Number of served customers l]ﬂ ‘ Help[ |

The next example is an output generated by the methods of the associated object. The global
variable intstat is a Tally object used to collect statistics on generated intervals between
arrivals. It is declared in the head script code as follows:

var intstat = new tally(); // interval statistics

At the beginning of an experiment it is initialized and then updated after each generation of an
interval between arrivals (see the updating in the function simulation () above). At the end
of the experiment we need the output of its basic statistics: the average, the minimum and the
maximum values and the standard deviation. Let the output be arranged as a part of a table
generated by the following HTML fragment:

<TR>

<TH ROWSPAN=4> Arrival intervals </TH>

<TH> Average </TH>

<TD><INPUT TYPE="text" NAME="intstatav" SIZE=25></TD>
<TR><TH> Minimum </THs>




‘ <TD><INPUT TYPE="text" NAME="intstatmi" SIZE=25></TD></TR>
, <TR><TH> Maximum </TH>

<ID><INPUT TYPE="text" NAME='"intstatma" SIZE=25s</TD></TR>
| <TR><TH> Std Dev </TH>

: <TD><INPUT TYPE="text" NAME="intstatsd" SIZE=25></TD></TR></TR>

i I
' Average L]1.02215531:2432218

|
. | Minimum | 0.0003365305770721002
' Arrival intervals

JMaximum |7.448755613843059

k
The figures were generated by an experiment with the duration 1000; intervals were

exponential with mean 1. The results were outputted by a method of the Tally object that was
caHedbythesHﬂmmentintstat.scrupdate("document.forml.intstat")'

, Std Dev ij1.n47493854523?saa

W tally.prototype.scrupdate = function(dname) { with (this) {

eval (dname + "av.value = average () ") ;
l eval (dname + "mi.value = min") ;
' eval (dname + "ma.value = max") ;
| eval (dname + "sd.value = stdDev () ") ;

Pl

| Note that the JavaScript code to be performed is generated automatically by the method and
' then performed by the function eval (). Alternatively it is possible to give the object a name
at initialization and to use the name in the outputting method instead of passing the name as
its parameter. This approach was used for random numbers. Here the relation between the
| variable name (intstat) and the form objects names like intstatav can be used to write
generic pieces of HTML code with formal parameters to be replaced by actual ones
(intstat). The replacement can be done by the “Replace all” operation available in
practically all editors or possibly by a special pre-processor (later). There is a similar method

that writes the results directly as an HTML document into a separate browser window. The
following is the method, its call and the output.

tally.prototype.winupdate = function(stitle,w) { with (this) {
w.writeln(stitle + " statistics:" «+ "<BR><UL>") ;

w.writeln("<LI> Average: " + average () ) ;
w.writeln("<LI> Minimum: " + min) ;
w.writeln("<LI> Maximum: " + max) ;
w.writeln("<LI> Std Dev: " + stdDev () + "</UL>");

Yhs

intstat.winupdate ("Arrival intervals",resultwindow):

Arrival intervals statistics:
L Average: 1.022166812432218

* Minimum: 0.0003365305770721002
e Maximum: 7.448755613843059
‘ * S5td Dev: 1.0474988845237538




Example Simulation

A model has been developed that enables simulation of single queue multi-channe] systems
with bulk (batch) arrivals and bulk service. Batch sizes can be constant Or random, Server(s)
either wait for complete batches to start service or alternatively smaller batches can be served.
For arrival intervals and service duration the user either selects a theoretical distributiop or
enters a distribution in table form (either probabilities or directly the cumulative distribution),
Then the user selects the number of servers and the maximum queue length in case of limiteq
system capacity. The population is unlimited due to batch arrivals. There is another mode]
with single arrivals and single service with limited population. Queue organization can he
either FIFO or LIFO (stack). All usual simulation results are available. Results can be saved in
a separate browser window. Visit the page http://staffum. edu.mt/jskll/simweb/sq2/sq2. htm to
experiment with this model. The model is not very complex but certainly not trivial. The code
has about 500 lines, most of it declaration, initialization, updating and displaying of quite a
big number of parameters and results. Note that during long simulation experiments the

browser may display a message that there is a long script running and whether you want to
abort the script (IE 5.5). Just click No.

Conclusion

JavaScript together with HTML can be used to create web hosted problem-solving tools that
contain simple or medium-scale simulation models. Regarding the speed it seems that if a
single queue system has intervals and service duration in the range of minutes and if the
experiment duration is such that months long continuous operation is simulated, the
experiments take tens of seconds or few minutes.
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