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Abstrakt
Tvárné porušování je jedno z důležitých témat v různých odvětvích, jako je automobilní,
námořní či energetický průmysl. Za jistých předpokladů bylo vyvinuto mnoho přístupů
k řešení problémů spojených s tvárným porušováním. Tato práce se zaměřuje na propo-
jení mikrostrukturního a fenomenologického modelování tvárného porušování při velkých
plastických deformacích, pokojové teplotě a kvazi-statickém monotónním zatěžování. Kom-
plexní podmínka plasticity závislá na třech invariantech napětí s deviátorově sdruženým
zákonem tečení byla svázána s několika pokročilými kritérii tvárného porušení včetně
jednoho původního. Modely byly nakalibrovány pro slitinu hliníku 2024-T351 a zaimple-
mentovány do komerčního explicitního konečnoprvkového kódu Abaqusu s cílem aplikace
na dva testy, které nebyly součástí kalibrační procedury. Toto prokázalo dobrou schopnost
predikce vzniku trhliny a jejího šíření modelovaného pomocí techniky mazání prvků při
víceosé napjatosti. Na závěr byly detailně prodiskutovány výsledky a shrnuty náměty pro
další práci.

Klíčová slova
Iniciace lomu, šíření trhliny, poškození, změkčení materiálu, smykový lom.





Abstract
Ductile fracture is one of the key topics in various branches, like the automotive, maritime
or energy industry. Many approaches to problems related to ductile fracture have been
developed under certain assumptions. The present work focuses on bringing together
the microstructural- and phenomenological-based ductile fracture modelling under large
plastic deformations, room temperature and quasi-static monotonic loading. The complex
yield criterion dependent on three stress invariants with deviatoric associated flow rule was
coupled with several advanced ductile fracture criteria including one original. The models
were calibrated for the aluminium alloy 2024-T351 and implemented within the Abaqus
commercial explicit finite element code in order to be applied to the two tests, which were
not covered within the calibration procedure. This demonstrated a good predictability of
the cracking onset and its propagation modelled by the element deletion technique under
the multiaxial stress state. The results were discussed in detail and topics of future work
were summarized in the end.
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1 Introduction

1.1 Background and motivation

The ductile fracture has been an issue since the metal was employed in engineering
applications, which is a long time ago. The investigations have begun since the plasticity
theory was introduced, because the ductile failure is a result of plastic deformation. It
registered an accelerated growth of attention with increasing computational power as it
was the case in many other fields.

The failure predictions aim at increasing the safety of machine elements, optimizing
the manufacturing processes or investigating the structure behaviour in accidents [1, 2].
The non-destructive testing has to be employed for inspections of parts, when the inner
flaws occur, while the numerical simulations are an effective tool in predicting those
discontinuities [3]. The manufacturing costs may decrease, when the metal forming
operations are optimized [4]. Apart from the products, the tools may be analysed too [5].
On the other hand, the cracking may be optimized in the processes as machining [6] or
cutting [7] as well, where it is intended. The computations may be useful when there is
a shortage of available material or the material is vintage or hazardous, like irradiated
[8]. The design of a new material and its application in various services, like the ballistic
protection [9], may also be of the interest. Immediate cost saving is apparent, but future
problems with liability may be avoided as well. Nevertheless, it should be noted that the
numerical simulations cannot ever replace the experiments [10].

Another step forward was employment of the digital image correlation [11]. It is
useful in the calibration as well as the verification stage [12]. It should be noted that
the utilization is mainly in sheet metal applications with biaxial stress state and major
strains observable on the material surface. Nevertheless, the cracks often initiate inside the
material in many cases so another option has to be sought, such as the tomography [13].

The isotropic hardening is often utilized in ductile fracture, while it is usually insufficient
for predicting the springback [14]. Apart from kinematic hardening, the directional
distortional hardening may be employed [15]. Another approach may be the crystal
plasticity [16, 17] or probabilistic modelling [18]. The modelling of plasticity is very
important within ductile failure, but not reviewed in detail within the present thesis.

The finite element method is usually employed to solve the fracture-related problems
by means of the element deletion technique. Nevertheless, this is not the only method used
to simulate the crack initiation and propagation. There are another options like the node
separation method [19], meshless method [20] or the extended finite element method [21].
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The possibilities of ductile fracture modelling are addressed in detail within the following
section.

1.2 Ductile fracture modelling
The macroscopic plastic (inelastic) deformation is the most often realized through the
dislocation glide on a microscopic level in metals at room temperature. As a result, the
material fails when the ductility is exhausted. Therefore, the equivalent plastic strain
accumulated throughout the loading history has been acknowledged as the governing
variable. The attention is further paid especially to the phenomenological ductile fracture
criteria, also sometimes referred to as empirical, and continuum damage mechanics.
However, there is a broader variety of options how to simulate the ductile failure, like
using the porosity based models [22, 23, 24], cohesive zone models [25, 26], peridynamics
[28] or the model proposed by Wilkins et al. [29].

1.2.1 Criteria dependent on the first principal stress

In the beginnings, it was realized that the ductility increases with increasing hydrostatic
pressure [30]. Therefore, the first influence on the ductile fracture was attributed to the
stress state conventionally represented by the first principal stress. Proposed criteria were
quite simple and usually one-parametric.

Cockroft and Latham [31] proposed the criterion as∫ ε̄D

0

σ̄
〈σ1

σ̄

〉
dε̄p = C, (1.1)

where ε̄D is the equivalent plastic strain for a given loading path, σ̄ is the equivalent stress,
σ1 is the first (maximum) principal stress, 〈〉 are the Macaulay brackets, C is the material
constant (a critical value – when reached, the material fails) and ε̄p is the equivalent plastic
strain defined as

ε̄p =

∫ tε

0

√
2

3

(
ε̇p : ε̇p

)
dt, (1.2)

where tε is the loading time, t is the time, : is the double dot product and ε̇p is the plastic
strain rate tensor. The equivalent plastic strain is a cumulative quantity, which can be
understood as a sum of plastic strain increments over a loading time.

When compared to the previous criterion, Brozzo et al. [32] included the mean stress
dependency in the criterion proposed by Cockroft and Latham [31] as∫ ε̄D

0

2σ1

3 (σ1 − σm)
dε̄p = C, (1.3)

where σm is the mean stress.
Later, Oh et al. [33] modified the criterion proposed by Cockroft and Latham [31] so

the criterion became dimensionless as∫ ε̄D

0

〈σ1

σ̄

〉
dε̄p = C. (1.4)
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A similar criterion was proposed by Ko et al. [34] as∫ ε̄D

0

σ1

σ̄

〈
1 + 3

σm
σ̄

〉
dε̄p = C. (1.5)

1.2.2 Criteria dependent on the stress triaxiality

Although the criterion proposed by Oh et al. [33] was dimensionless, the usage of stress
triaxiality has started to prevail. More detailed stress state characterization is given in
Appendix A. The stress triaxiality is defined as

η =
σm
σ̄
. (1.6)

Rice and Tracey [35] proposed a criterion, which is also grouped with models based on
the void nucleation, coalescence and growth, such as the one proposed by McClintock [36],
in the following form∫ ε̄D

0

0.283e
√
3

2
ηdε̄p = C. (1.7)

The criterion is, as all the previously introduced ones, independent of the normalized third
invariant of deviatoric stress tensor, which is defined as

ξ =
27

2

det (s)

σ̄3
, (1.8)

where s is the deviatoric stress tensor. Nevertheless, the criterion proposed by Rice and
Tracey [35] becomes curved along the normalized third invariant of deviatoric stress tensor,
when transformed into the space of that stress state measure and the ratio of the first
principal stress to equivalent stress. The latter stress state measure was used by Oh et al.
[33] for defining the criterion, which becomes curved along the normalized third invariant
of deviatoric stress tensor, when transformed into the space of that stress state measure
and stress triaxiality. The whole problem is illustrated in Fig. 1.1.

All the previously introduced criteria, apart from the one proposed by Rice and Tracey
[35], have inherently a cut-off due to its mathematical formulation. It means that there is
a value of the stress triaxiality, below which no crack initiates. This can be illustrated by
a vertical boundary, as in the case of the criterion proposed by Oh et al. [33] in Fig. 1.1.

Later on, the concept of damage parameter has been used. It is defined as follows

D =

∫ ε̄D

0

1

ε̄f
dε̄p, (1.9)

where ε̄f is the fracture strain. The fracture strain can be dependent, among the strain
rate and temperature, on the stress triaxiality and normalized third invariant of deviatoric
stress tensor. Then, the damage evolution is normalized on the contrary to the previously
introduced criteria with a material constant C, which generally takes a value different from
unity, whereas the damage parameter takes zero for the undamaged material and unity for
then fully damaged material at the point of failure. The dependency of damage parameter
on the equivalent plastic strain is linear in Eq. 1.9, but it can generally be non-linear.
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Figure 1.1: Two spaces with two ductile fracture criteria curved only in one of each
(normalized third invariant of deviatoric stress tensor is used within both spaces)

Johnson and Cook [37] has proposed a criterion, which was actually first introduced
by Johnson [38], depending on the stress triaxiality as

ε̄f =
(
D1 +D2eD3η

) [
1 +D4 ln

(
˙̄εp
ε̇0

)]
(1 +D5Th) , (1.10)

where D1, . . . , D5 are the material constants, ˙̄εp is the equivalent plastic strain rate, ε̇0 is
the reference strain rate and Th is the homologous temperature defined as

Th =
T − Tr
Tm − Tr

, (1.11)

where T is the temperature, Tr is the room temperature and Tm is the melting temperature.
The criterion is dependent on the strain rate and temperature and is widely used in various
applications requiring the consideration of these variables. It is illustrated in Fig. 1.2.

Bao and Wierzbicki [39], first published by Bao [40], conducted an extensive experi-
mental program on aluminium alloy and found that the fracture strain dependency cannot
be described by a simple decreasing function with increasing stress triaxiality. Therefore,
the following expression was proposed

ε̄f =


B1 (η + 1/3)B2 if − 1/3 < η ≤ 0

B3η
2 −B4η +B5 if 0 < η ≤ 0.4

B6/η if 0.4 < η ≤ ∞
, (1.12)

where B1, . . . , B6 are the material constants. The criterion is illustrated in Fig. 1.2. It was
also concluded that there is a cut-off stress triaxiality ηc = −1/3, below which the damage
parameter does not accumulate and therefore, there is no fracture. It is probably a correct
assumption, but it was proved that the value is material dependent and can be lower than
−1/3 as initially thought. Finally, the complex dependency on the stress triaxiality was
just one step before the Lode dependency was acknowledged. The dependency is called
after Lode [27], who was among the first who described the effect of deviatoric stress state.
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Figure 1.2: Criteria proposed by Bao and Wierzbicki and Johnson and Cook

1.2.3 Criteria dependent on the stress triaxiality and normalized

third invariant of deviatoric stress tensor

Wilkins et al. [29] proposed a criterion depending not only on the hydrostatic pressure,
but also on the deviatoric stress state assuming that the fracture strain decreased with
increasing shear loading. Nevertheless, it took much longer before the Lode dependency
has been widely accepted within the ductile fracture. Then, it even took its place within
the porosity-based models [41]. Moreover, the lowest ductility at generalized shear also
implies that the cut-off plane should be convex, which has not been much regarded in the
literature yet. It will be further addressed accordingly.

Wierzbicki et al. [42] proposed a criterion dependent on the normalized third invariant
of deviatoric stress tensor and stress triaxiality as

ε̄f = C1e−C2η −
(
C1e−C2η − C3e−C4η

) (
1− |ξ|

1
n

)n
, (1.13)

where C1, . . . , C4 are the material constants, || is the absolute value and n is the strain
hardening exponent. The fracture locus was symmetric with respect to the generalized
shear.

Then, it was similarly followed by many others with asymmetric fracture loci. Bai and
Wierzbicki [43] proposed a criterion, it was actually Bai [44] first, in a similar manner as

ε̄f =

[
1

2

(
A1e−A2η + A5e−A6η

)
− A3e−A4η

] [
1− 2

p
arccos (ξ)

]2

+
1

2

(
A1e−A2η − A5e−A6η

) [
1− 2

p
arccos (ξ)

]
+ A3e−A4η, (1.14)

where A1, . . . , A6 are the material constants. It has not been widely used due to its
unpredictable behaviour out of the calibrated range.
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Nevertheless, Bai and Wierzbicki [45] later proposed more sophisticated (extended
Mohr–Coulomb) criterion, it was Bai [44] first again, with a low number of material
constants as

ε̄f =

[
K

E2

(1− cη [η − η0])

×

(
cs +

√
3

2−
√

3
(ca − cs)

[
sec

(
1

3
arcsin[ξ]

)
− 1

])

×

(√
1 + E2

1

3
cos

(
1

3
arcsin[ξ]

)
+ E1

[
η +

1

3
sin

(
1

3
arcsin[ξ]

)])]− 1
n

, (1.15)

where × is the multiplication sign, E1 and E2 are the material constants related to fracture,
K is the strength coefficient (it comes from the Hollomon hardening law [46] together with
n), and finally the material constants from the slightly simplified yield criterion earlier
introduced by Bai and Wierzbicki [43] as well: η0, cη, cs and ca, where

ca =

{
cc if ξ < 0

ct if ξ ≥ 0
, (1.16)

where cc and ct are the material constants. A slight modification will be presented within
this thesis. Moreover, it simplifies into the following, when von Mises yield criterion is
assumed

ε̄f =

[
K

E2

(√
1 + E2

1

3
cos

(
1

3
arcsin[ξ]

)

+ E1

[
η +

1

3
sin

(
1

3
arcsin[ξ]

)])]− 1
n

. (1.17)

Lou et al. [47] proposed a criterion for a sheet metal forming dependent on the stress
triaxiality and maximum shear stress. Lou and Huh [48] developed an extension into
the space of stress triaxiality and Lode parameter. Later, Lou et al. [49] introduced
a changeable cut-off inspired by the criterion proposed by Cockroft and Latham [31], while
all of this was actually first published by Lou [50] as

ε̄f = L3

 2√
3
[
1 + tan2

(
−1

3
arcsin[ξ]

)]
−L1

×

〈
1

1 + CL

η +

√
3− tan

(
−1

3
arcsin[ξ]

)
3
√

1 + tan2
(
−1

3
arcsin[ξ]

) + CL

〉−L2

, (1.18)

where L1, . . . , L3 are the material constants and CL is the fixed material constant with
a condition that CL 6= −1. No constraint is needed for treating the cut-off plane shape as
it is fixed.
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A slight modification to this criterion was introduced by Kubík et al. [51] independently
on and simultaneously with Xiao et al. [52]. It considered the fixed material constant (CL)
as another material constant used for the fitting with implementing the constraint that
ηc − ηa < 0, where ηa is the average stress triaxiality. Finally, Lou et al. [53] introduced
another material constant into the cut-off in order to better govern the dependence on the
deviatoric stress state measure. Although the material constants were already calibrated
altogether, there was still prescribed a restriction on the cut-off stress triaxiality so that
ηc = −2 for ξ = −1 (similarly done by Lou and Yoon [54] later). Therefore, the material
constant can still be regarded as fixed, or semi-fixed, in such a case.

Roth and Mohr [55] proposed a (Hosford–Coulomb) criterion in a similar way as Bai
and Wierzbicki [45] as

ε̄f =

(
K

H2

[(
1

2

[
(f1 − f2)H1 + (f2 − f3)H1 + (f1 − f3)H1

]) 1
H1

+H3(2η + f1 + f3)

])− 1
n

, (1.19)

where H1, . . . , H3 are the material constants and f1, . . . , f3 are the trigonometric functions
dependent on the normalized third invariant of deviatoric stress tensor as

f1 =
2

3
cos

[
1

3
arccos(ξ)

]
, (1.20)

f2 =
2

3
cos

[
2

3
p− 1

3
arccos(ξ)

]
, (1.21)

f3 = −2

3
cos

[
1

3
p− 1

3
arccos(ξ)

]
. (1.22)

1.2.4 Continuum damage mechanics

The foundation of continuum damage mechanics was laid by Kachanov [56], who formulated
the concept of effective stress and introduced the weakening function w, which is zero at
the moment of fracture and unity for the undamaged material. Rabotnov [57] established
a relationship between the weakening function and microstructural damage parameter as

w = 1−Ds. (1.23)

Then, the concept of effective stress (flow stress of matrix) is

σ̃ =
σ

1−Ds

, (1.24)

where σ is the stress.
Rousselier [58] proposed a model similar to Gurson’s [59, 60, 61], but capable of the

void growth in pure shear.
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Krajcinovic and Fonseka [62] developed a constitutive equation for damaging brittle
materials, which was later extended by Krajcinovic [63] to ductile materials as well.

Lemaitre [64, 65] formulated the coupling within the framework of the thermodynamics
of irreversible processes and introduced the damage strain energy release rate as

−Y =
σ̄2

2E (1−Ds)
2

(
2

3
(1 + ν) + 3(1− 2ν)η2

)
, (1.25)

where E is the Young’s modulus and ν is the Poisson’s ratio. The rate of microstructural
damage parameter was defined as follows

Ḋs =

0 if ε̃p < εD
1

1−Ds

(
−Y
S1

)S2
˙̃εp if ε̃p ≥ εD

, (1.26)

where ε̃p is the effective plastic strain derived from the hypothesis of strain equivalence and
˙̃εp is its rate, S1 and S2 are the material constants and εD is the damage strain threshold.
The material fails when Ds = Dc (not when Ds = 1 as it should be according to Eq. 1.23),
where Dc is the critical damage parameter which is another material constant. This
approach has been followed by many others in various modifications [66, 67, 68, 69, 70].

Sidoroff [71] and Chaboche [72] introduced the anisotropic damage, for which Murakami
and Ohno [73] proposed a procedure of symmetrizing the effective stress. Based on that,
Chow and Wang [74] proposed an anisotropic model in the scope of Lemaitre’s approach
[64, 65], later followed within the thermodynamically consistent framework by others
[75, 76, 77].

Kattan and Voyiadjis [78] decomposed the damage into two parts related to voids and
cracks, respectively.

Xue [79] assumed that the flow stress of matrix is greater than the conventional flow
stress of the material containing flaws, therefore

Ds ≤ D. (1.27)

In order to relate the micro and macro (Eq. 1.9) behaviour, Xue [79] introduced the
weakening exponent β ≥ 1, so

Ds = Dβ. (1.28)

Besides that, Xue [79] also proposed a nonlinear damage accumulation according to

D =

∫ ε̄D

0

α

(
ε̄p
ε̄f

)α−1
dε̄p
ε̄f
, (1.29)

where α is the damage exponent.
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Finally, Xue [79] also introduced a ductile fracture criterion in the following form

ε̄f = ε̃f

(
1− F1 ln

[
p

plim

])(
F2 + (1− F2)

∣∣∣∣6pθL − 1

∣∣∣∣F3
)
, (1.30)

where ε̃f is the fracture strain without confining pressure, p is the hydrostatic pressure,
plim is the limiting pressure beyond which there is no fracture (cut-off), F1, . . . , F3 are the
material constants and θL is the Lode angle defined on interval 0 ≤ θL ≤ p/3 with respect
to the normalized third invariant of deviatoric stress tensor as1

ξ = cos (3θL) . (1.31)

It should be noted that the fracture locus is symmetric (Fig. 1.3) as in the case of the
criterion proposed by Wierzbicki et al. [42].

0.0Fr
ac
tu
re

st
ra
in

[–
]

Pressu
re [M

Pa]Lode angle [rad]

0 400

0.5

1.0

200

1.5

p/6 0−200−400p/3

Figure 1.3: Fracture locus of criterion proposed by Xue [79, 80]

The so-called post-initiation softening is another technique, when the damage is partially
coupled with elastic–plastic behaviour [81, 82, 83, 84, 85]. It means that the damage
parameter accumulation is driven by the plastic deformation and in turn, the elastic
behaviour and constitutive law is influenced by the amount of damage after some threshold.
It was found challenging to produce the slant fracture with phenomenological ductile
fracture criteria, which are uncoupled, from the previous three subsections. Therefore, the
material weakening was introduced by the following formula

w =

(
Dc −D
Dc −D0

)χ
, (1.32)

where χ is the material constant and D0 is the damage initiation, which is usually being
equal to unity and when reached, the softening effect is triggered.

It should be noted that all the described solutions are mesh dependent. Moreover, the
loss of ellipticity and subsequent localization occur when the coupled models are employed.
This may be solved by the nonlocal regularization [86, 87, 88].

1 More deviatoric stress state measures are described in Appendix A.
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1.3 Objectives of the study
The objective of the present thesis is to study the ductile fracture modelling possibilities
under the conditions of the monotonic quasi-static loading at room temperature. The
main contributions may be summarized into a few bullets as:

• Estimate the elastic material behaviour using a reliable method.

• Estimate the constitutive law based on the standard tensile test.

• Design the experimental campaign with specimens geometries exhibiting the loading
as close to proportional as possible.

• Calibrate the advanced yield criterion using the tests under various stress states.

• Calibrate the advanced ductile fracture criteria using a sufficient number of experi-
ments.

• Apply the calibrated models to several tests to see the predictability.

• Assess the whole approach and propose the goals for the future studies.
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2 Experimental campaign

2.1 Investigated material

The whole experimental campaign was carried out on the wrought aluminium alloy ČSN
42 42032 in the condition T351, hereinafter 2024-T351. The heat treatment designates that
the material was solution heat-treated, stress-relieved and then naturally aged, while the
stress relief was accomplished by the stretching of the metal by 1.5–3.0% of deformation.
There was no straightening after the stretching.

Although this aluminium alloy with the face-centred cubic structure does not exhibit
an extensive necking, there have been conducted many tests in scope of ductile fracture
[89, 90, 91]. Each batch is unique and the results may vary significantly. Flow curves from
various sources are plotted in Fig. 2.1 with a huge scatter even in such a limited range.
Moreover, the scatter in points for ductile fracture criteria calibration may be seen in
Fig. 2.2. In order to avoid combining data from various sources like in [92, 93], and in
order to eliminate the influence of microstructure or even misinterpreting the real material
behaviour, the experimental campaign has been set up and the material was supplied by
Feropol as a cold-rolled plate with dimensions of 1500× 1000× 20mm.

The chemical composition given in Table 2.1 is a result of three-times repeated measure-
ment on Spectrumat GDS 750 obtained by the glow discharge optical emission spectroscopy.

Table 2.1: Chemical composition of 2024-T351 [80]

Element Si Fe Cu Mn Mg Cr Zn Ti Ni Pb Sn

Composition
0.07 0.25 4.3 0.52 1.71 0.00 0.01 0.04 0.00 0.00 0.00[Weight %]

2 Similar or equivalent designations are EN573 AW-2024, AW-AlCu4Mg1, AlCu4Mg1.5, AA2024, UNS
A92024, AMS 4037, AL-P13, AlCuMg2, CG42, A-U4G1, AIR 9048-630, Wk.3.1355, LW3.1354, P-
AlCu4.5MgMn, 9002/4, FA60-2024, A2024P, 1160, 2024, 3583, L-3140, BS 2L97, AMD2433, DTD5090,
DTD 5100A or USA-WW-T-700/3 [94].
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Figure 2.1: Scatter in flow curves published by Bai et al. [95], Wierzbicki et al. [42], Seidt
and Gilat [96], Papasidero et al. [97] and Xiao et al. (for the reference strain rate and

room temperature) [98]
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Figure 2.2: Scatter in points used for the ductile fracture criteria calibration from [99] and
published by Wierzbicki et al. [42], Seidt [100] and Papasidero et al. [97]

The reference block of material was milled from the plate and the weight was measured
using the analytical balance with 1mg readability resulting in the density of 2770 kg×m−3.
The block was used for non-destructive measurement of the wave velocity by the OLYMPUS
38DL PLUS ultrasonic thickness gauge with M110 contact transducer. The Poisson’s ratio
of 0.34 was computed knowing the Young’s modulus (72500MPa from the standard tensile
tests conducted further) and average wave velocity of 6347 m× s−1 [80].
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Two metallographic specimens were hot pressed into the epoxy resin with a mineral
filler (Struers DuroFast) on the ATM Opal X-Press, then grinded with sandpapers from
SiC of P320, P500, P800, P1200, P2400 and P4000 roughness for three minutes, while
water-cooled on the Struers Pedemin, mechanically polished using 3 and 1 mm diamond
paste and finally super-fine polished with OP-S suspension with ethanol wetting agent for
three minutes per cycle. Then, the specimens were utilized for the analysis based on the
Electron BackScatter Diffraction (EBSD). ZEISS Ultra Plus Scanning Electron Microscope
(SEM) equipped with EBSD detector from the Oxford Instruments was deployed. The
accelerating voltage of 20 kV was used, while the specimen was mounted at the angle of 70
degrees. The alloy was supplied as a cold-rolled product, so the size and orientation of
grains suggest some anisotropy (Fig. 2.3).

200 mm

Transverse direction

200 mm

Rolling direction

001 101

111

Figure 2.3: EBSD analysis for the two perpendicular cuts
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Figure 2.4: Results from the standard tensile tests in two perpendicular directions and
post-mortem specimen from transverse direction showing minimum ellipticity [80, 101]
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Nevertheless, the level of anisotropy was low in a macroscopic point of view in such
a bulk material as demonstrated on the standard tensile tests as well as final shape of
the post-mortem specimen from the transverse direction (Fig. 2.4), which was obtained
using the SEM Tescan LYRA3 XMH [80, 101]. Therefore, the material was considered
isotropic for the finite element modelling and all the specimens were manufactured having
the axis parallel to the transverse direction, because there was only a minimum scatter
in the displacements to fracture along that direction (Fig. 2.4) when compared to the
longitudinal one. A minimum scatter in the force responses was then advantageously
observed in the forthcoming tests as well. The influence of anisotropy would be smaller
here than the scatter in results from the literature described in Figs. 2.1 and 2.2. The
anisotropic yield criteria are, among other alternatives like the directional distortional
hardening [15], another modelling approach to the one presented further, which could bring
another issues. The anisotropic plasticity models are primarily utilized for the sheet metal
forming, like stamping or deep drawing [102, 103]. It is possible to extend the proposed
approach to cover the orthotropic behaviour, but it would mean for a bulk material that
it becomes enormously complicated when the dependency on various stress invariants is
introduced, it is very expensive when all the experiments are carried out for all the material
directions (the number would be tripled), and it gives rise to the extensive number of
material constants, making the final model inapplicable in practice or industry without
any convincing improvement and clear physics behind it. Therefore, the assumption of
isotropic behaviour was prioritized with the intention to use as complex up-to-date yield
criterion as possible, yet simple to be calibrated, in order to accurately describe the whole
variety of stress states neglecting a minor anisotropy. In conclusion, the assumption of
2024-T351 isotropy is supported by a number of other studies [92, 104, 105], which did not
even employ any complex yield criterion. It is not typical to take the transverse direction
for the ductile fracture analysis, but it should not play a significant role as long as the
material was considered isotropic, therefore having all the global responses approximately
identical in all directions. The presented microscopic observations represent only an
informative content here, which are not directly reflected in the finite element modelling
of homogeneous continuum using the phenomenological criteria. Unfortunately, such an
information is often not given, which makes the analysis of published results difficult. For
example, Bao and Wierzbicki [39] made an extensive analysis of 2024-T351 aluminium
alloy, used across the ductile fracture community to these days [106]. Papasidero et al.
[97] revisited these results and concluded that the disagreement with new own experiments
should be accounted to the different microstructure, which brought no light into the
topic as no information on the crystallographic texture was originally provided by Bao
and Wierzbicki [39]. Besides that, there are studies paying attention to the influence of
crystallographic texture on the fracture strains including the grain size level [107, 108, 109].
Finally, all the discrepancies may also be attributed to the gradually improving resolution
of measuring devices and methods.

The grain size distribution is depicted in Fig. 2.5 for the transverse direction, while
the inverse pole figures are in Fig. 2.6. Over 800000 data points were used for the EBSD
analysis. The crystallographic texture exhibited a preferred orientation in crystallographic
directions 〈111〉 and 〈101〉 parallel to the longitudinal direction, while crystallographic
directions 〈001〉 and 〈111〉 parallel to transverse and width directions, respectively.
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Figure 2.5: Grain size distribution in the transverse direction
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Figure 2.6: Inverse pole figures for the aluminium alloy 2024-T351

The crack initiated either on the specimens’ surface or inside the specimens within this
study, as discussed further. Nevertheless, all the specimens had the process zone, where
the crack appeared sooner or later, prepared in the same quality. The surface roughness of
0.4 mm was prescribed on the detailed drawings, but much lower values between 0.078 and
0.102 mm were measured on a representative specimen using the BrukerContourGT-X8
Non-Contact 3D Optical Profiler. Therefore, the surfaces of process zones were prepared
very carefully so that the surfaces roughness could not influence the results.

2.2 Tension of smooth cylindrical specimen

Five standard tensile tests were conducted on the Zwick Z250 Allround-Line, tCII, with
the extensometer Zwick multiXtens of 30mm gauge length. The specimens (Fig. 2.7) were
pulled under the rate of 1mm/min until the yield stress and then, the rate was smoothly
increased to 2mm/min [80]. The responses are displayed in Fig. 2.7.
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Figure 2.7: Drawing and responses of standard tensile specimens [80]

2.3 Tension of notched cylindrical specimens

Three tensile tests were conducted for each geometry depicted in Fig. 2.8 with notches
R13, R6.5 and R4 (the latter two are not depicted in Fig. 2.8, but share the same geometry
apart from the notch radii). Tests were carried out using the Zwick Z250 Allround-Line,
tCII, and the extensometer Zwick multiXtens with a gauge length of 30mm. The rate of
1mm/min was used and the responses are in Fig. 2.8 [80].
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Figure 2.8: Drawing and responses of tensile notched cylindrical specimens [80]

2.4 Compression of notched cylindrical specimen

Two upsetting tests of notched cylindrical specimen were carried out (Fig. 2.9). Tests were
realized using the Zwick Z250 Allround-Line, tCII, with the Zwick multiXtens extensometer
following the compression. The rate of 1mm/min was used. The responses are given in
Fig. 2.9 [51].
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Figure 2.9: Drawing and responses of upsetting notched cylindrical specimens [51]

This new specimen geometry was designed, because the smooth compressed cylinder
does not exhibit a clear crack initiation location. Moreover, the evolution of stress
triaxiality and normalized third invariant of deviatoric stress tensor took from the surface
in the middle of the specimen height, as usual, show high non-proportionality due to the
barrelling [110, 111]. The aim of the present thesis is to have as proportional loading as
possible, which will be presented further.

2.5 Tension of notched tubular specimen

Three tensile tests of notched tubular specimen (Fig. 2.10) were conducted on the Zwick
Z250 Allround-Line, tCII, along with the Zwick multiXtens extensometer having 30mm
gauge length. The rate was 1mm/min again. The responses are depicted in Fig. 2.10.
Two universal joints were employed to prevent the misalignment of the specimen [80].
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Figure 2.10: Drawing and responses of tensile notched tubular specimens [80]
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2.6 Torsion of notched tubular specimen
Three torsional tests were realized using the notched tubular specimen (Fig. 2.11) under
the rate of 0.001 rad/s. MTS 809 Axial/Torsional Testing System was employed and the
angle of rotation was read from 646 Hydraulic Collet Grip. The wall thickness in the
process zone was designed even thinner than the one in the case of tensile notched tubular
specimen so that the crack initiation was followed by a rapid failure. The responses are
displayed in Fig. 2.11 [80].
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Figure 2.11: Drawing and responses of torsional notched tubular specimens [80]
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3 Material modelling

The first feature of the material model is the elasticity – isotropic or anisotropic. Then, it is
followed by the relationship of stress and plastic strain – the constitutive (hardening) law,
which may be isotropic (defined by the flow curve), kinematic (describing the Bauschinger
effect) or combined, prescribing the behaviour of yield surface defined by the yield criterion.
The criterion may be isotropic or anisotropic, whereas quadratic or not, eventually stress
triaxiality dependent. Finally, the flow rule – associated or not – defines the plastic strain
increment direction. All parts of the model are described in the following sections.

All the computations were realized in Abaqus 2019. The mesh dependency was treated
by using the same characteristic elements size of 0.075mm within the gauge section in all
numerical simulations. The mapped mesh was created as depicted in Fig. 3.1, where the
smooth cylindrical specimen is omitted as the mesh layout is obvious, when 3× 15mm
rectangle was modelled. All the tests were modelled using the axial symmetry with CAX4R
four-node bilinear quadrilateral elements with reduced integration and hourglass control,
apart from the torsion and compression, which were modelled in three dimensions with
C3D8R eight-node linear brick elements with reduced integration and hourglass control.
The upper tubular part of torsional specimen, which did not undergo any deformation, was
meshed with elements having a size of 0.2mm. So as the parts of the cylinder, modelled
with respecting the vertical and horizontal planes of symmetry, in a distance of 1.5mm
from the notch. Moreover, R3D4 four-node bilinear quadrilateral rigid elements with the
size of 0.2mm were utilized for the tool in the upsetting test, where the friction coefficient
of 0.05 was applied (the punch is not displayed in Fig. 3.1). It was identified on the basis of
deformations – barrelling and stick and slip regions. The simulation time was 0.1 s and the
mass scaling with time increment of 1× 10−7 s was employed for torsion and compression
in order to speed up the computations, while the kinetic energy was checked in order to
be negligible when compared to the total energy.

Figure 3.1: Meshed specimens with highlighted crack initiation locations (not in scale)
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3.1 Model of elasticity

The isotropic elastic model of material was adopted, as mentioned earlier. The material
constants used for the computations are given in Table 3.1 together with physical property
needed for the calculation within the explicit finite element method, which was utilized
due to its conditional stability allowing the crack initiation and propagation by means
of element deletion. In such a case, the implicit algorithm is not capable of solution
convergence [80].

Table 3.1: Elastic constants and specific mass utilized within computations

Young’s modulus [MPa] Poisson’s ratio [–] Density [kg ·m−3]

72500 0.34 2770

3.2 Model of plasticity

The isotropic plastic behaviour was assumed, as discussed earlier. All the parts of the
plasticity model are introduced in the following subsections.

3.2.1 Constitutive law

All the following yield criteria will share the same hardening law at the axisymmetric
tension. The flow curve was identified against the standard tensile test of smooth cylindrical
specimen, as described in the Section 2.2. First, the engineering strains and stresses were
recalculated into true quantities up to the ultimate tensile strength (Fig. 3.2). Beyond
that, the curve was extrapolated and the trial and error method was employed until the
satisfying match between the average experiment and computation was achieved [80].
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Figure 3.2: Stress–strain curves and calibrated conventional multi-linear flow curve [80]
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Calibrated multi-linear flow curve is depicted in Fig. 3.2 and named as conventional.
There is also a flow curve of matrix, which will be introduced due to the adopted plasticity
damage approach later within this section [80].

3.2.2 Von Mises yield criterion with associated flow rule

The idea of quadratic yield criterion was first formulated by Maxwell in a letter to Kelvin.
Huber [112] presented the principal on the basis of shear energy. Von Mises [113] proposed
that yielding occurs when the second invariant of deviatoric stress tensor reaches a critical
value. Finally, Hencky [114] interpreted it as a critical value of elastic energy of distortion.

The yield function can be written as

f = σ̄ − σy, (3.1)

where σy is the yield stress and σ̄ is the equivalent stress defined as

σ̄ =

√
3

2
(s : s). (3.2)

The associated flow rule is given by

∂f

∂σ
=

3

2

s

σ̄
. (3.3)

It should be noted that the outward normal is not unit when the above formulation is
adopted.

Finally, the increment of plastic multiplier is explicitly written as

∆λ =
σtr − σy
3G+H

, (3.4)

where σtr is the trial stress, G is the shear modulus and H is the plastic modulus.

3.2.3 Kroon–Faleskog yield criterion with associated flow rule

Kroon and Faleskog [115] proposed a yield function (Kroon–Faleskog), which was dependent
on the second and third invariants of deviatoric stress tensor. The yield function was

f = σ̄ − kσy, (3.5)

where k is the yield correction function defined as

k = 1− µ
(
1− ξ2

)( 1 + ξ
1
a
0

[1− ξ2]
1
a + ξ

1
a
0

)a

= 1− µ sin2 (3θL)

(
1 + ξ

1
a
0

sin
2
a (3θL) + ξ

1
a
0

)a

, (3.6)

where µ, ξ0 and a are the material constants.
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The associated flow rule is given by the derivative of the yield function as

∂f

∂σ
=

3

2

s

σ̄
− 3

dk
dξ

k

(
2

3

2

s

σ̄
· 3

2

s

σ̄
− I − ξ 3

2

s

σ̄

)
, (3.7)

where · is the dot product, I is the identity matrix and the derivative is

dk

dξ
=

2µ
(

1 + ξ
1
a
0

)a
ξ

1
a
0 ξ(

[1− ξ2]
1
a + ξ

1
a
0

)a+1 . (3.8)

Note that the first term in Eq. 3.7 is analogical to Eq. 3.3. Moreover, Kroon–Faleskog
yield criterion is symmetric with respect to the generalized shear (ξ = 0), which implies
that the yield correction function is an even function, so k(ξ) = k(−ξ). It simplifies into
von Mises yield criterion when µ = 0 and roughly approaches Tresca yield criterion [116]
when µ = 1−

√
3/2, yet with round corners unlike to Tresca yield criterion [116] exhibiting

a singularity.
The plastic multiplier increment was calculated similarly to Eq. 3.4 according to the

following expression

∆λ =
σtr − kσy
3G+ kH

, (3.9)

containing only the yield correction function additionally.
The yield criterion was implemented into Abaqus using the Vectorized User MATerial

(VUMAT) subroutine. Then, it was calibrated by the trial and error method towards
the experiments at generalized shear (tension and torsion of notched tube). Calibrated
material constants are given in Table 3.2 with the yield locus depicted in Fig. 3.3 compared
to the von Mises one, where σI, σII and σIII are the principal stresses not ordered according
to the magnitude [80].

Table 3.2: Calibrated material constants for Kroon–Faleskog yield criterion [80]

µ [–] ξ0 [–] a [–]

0.123 0.180 4.000

The curvature was checked to ensure that the yield surface is convex according to the
expression for polar coordinates in the form

κ =
r2 + 2

(
dr

dθL

)2

− r d2r
dθ2L(

r2 +
(

dr
dθL

)2
) 3

2

> 0, (3.10)

where r is the radial coordinate of cylindrical coordinate system dependent on the Lode
angle3 through the yield correction function as

r = k

√
2

3
σy. (3.11)

3 More details on coordinate systems are given in Appendix A.
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Figure 3.3: Calibrated Kroon–Faleskog yield criterion compared to the von Mises one [80]

Then, the respective derivatives are

dr

dθL
=

dk

dθL
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×

(
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sin
2
a (3θL)

sin
2
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1
a
0

4 cos2 (3θL)− 4 cos2 (3θL) + 2

)
.

The curvature was modified for easier plotting according to Kroon and Faleskog [115] as

κ̄ =
ln
(

1 +
√

2
3
σyκ
)

ln(2)
. (3.14)

The smoothness of the yield surface is ensured, when the curvature is finite, which was
satisfied as well.

3.2.4 Bai–Wierzbicki yield criterion with deviatoric associated

flow rule

Bai and Wierzbicki [43] (it was Bai [44] first actually) proposed a yield criterion dependent
on the stress triaxiality and normalized third invariant of deviatoric stress tensor.
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Due to the easier implementation, the yield correction function was introduced as in
the case of Kroon–Faleskog yield criterion in Eq. 3.6 as

k = (1− cη [η − η0])

(
cs + [ca − cs]

[
γ − γm+1

m+ 1

])
, (3.15)

where η0 is the initial stress triaxiality (serving as another material constant), cη, cs and
m are the material constants and γ is the function of deviatoric stress tensor as

γ =

√
3

2−
√

3

(
sec

(
1

3
arcsin[ξ]

)
− 1

)
=

√
3

2−
√

3

(
sec
(
p

6
− θL

)
− 1
)
. (3.16)

It should be noted that the secant is an even trigonometric function. Therefore, Bai and
Wierzbicki [43] used sec (θL − p/6). Finally, ca is the function distinguishing between the
tension and compression as

ca =

{
ct if ξ ≥ 0

cc if ξ < 0
, (3.17)

where ct and cc are the material constants. It should be noted that Vershinin [117] pointed
out that it was mistakenly assumed that σ̄ = σy, which is not the case for the yield
criteria dependent on the stress triaxiality and/or deviatoric stress tensor. Nevertheless,
the deviatoric associated flow rule is given by Bai and Wierzbicki [43] by the chain rule as

∂f

∂σ
=
∂σ̄

∂σ
+ σycη

(
cs + [ca − cs]

[
γ − γm+1

m+ 1

])
∂η

∂σ

− σy (1− cη [η − η0]) (ca − cs) (1− γm)
∂γ

∂σ
. (3.18)

The first derivative in Eq. 3.18 is analogical to Eq. 3.3 as
∂σ̄

∂σ
=

3

2

s

σ̄
. (3.19)

The second derivative is
∂η

∂σ
=

1

3

I

σ̄
− 3

2

s

σ̄2
η. (3.20)

Finally, the last derivative is

∂γ

∂σ
=

3
√

3

2−
√

3

tan
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1
3

arcsin [ξ]
)

cos
(

1
3

arcsin [ξ]
) 1

σ̄
√

1− ξ2

(
3

2

s · s
σ̄2
− I

3
− ξs

2σ̄

)
. (3.21)

It should be noted that the outward normal is perpendicular to the yield surface only
on the deviatoric (octahedral) plane4 when the first term is eliminated from Eq. 3.20,
therefore the deviatoric associativity of the flow rule.

The yield criterion simplifies into the von Mises one when either cη = 0 and cc = cs =
ct = 1 or m = 0. It becomes the yield criterion proposed by Drucker and Prager [118]
when cη 6= 0 while either cc = cs = ct = 1 or m = 0. Finally, it closely approaches the
Tresca [116] yield criterion when cη = 0, cs =

√
3/2, cc = ct = 1 and m→∞.

4 More information on planes is given in Appendix A.
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The plastic multiplier was calculated according to the same equation, as in the case
of previous yield criterion (Eq. 3.9). The yield criterion was implemented into Abaqus
using the VUMAT as in the previous case. Then, it was calibrated by the trial and error
method towards all experiments. Calibrated material constants are in Table 3.3, while the
yield locus is depicted in Fig. 3.4 [51].

Table 3.3: Calibrated material constants for Bai–Wierzbicki yield criterion [51]

η0 [–] cη [–] cc [–] cs [–] ct [–] m [–]

0.20 0.09 1.01 0.88 1.00 20.0
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Figure 3.4: Calibrated Bai–Wierzbicki yield criterion compared to the von Mises one [51]

The yield surface convexity is dependent on the material constants cc, cs, ct and m.
Lian et al. [119] derived a simple criterion for the convexity,

√
3/2 ≤ cs/ca ≤ 1, which is

independent on material constant m, which should be a positive integer. For full control,
the curvature was calculated and checked again according to Eqs. 3.10 and 3.11. The first
derivative is

dr

dθL
=

dk

dθL

√
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3
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2
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6
− θL

)]m) . (3.22)
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The second derivative is
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The requirement on the finite curvature was satisfied, so the yield surface is smooth.

3.2.5 Comparison of calibrated yield criteria

The modified curvatures of all calibrated yield criteria are compared in Fig. 3.5.
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Figure 3.5: Modified curvatures of calibrated yield criteria

All the computations have been conducted with the use of conventional flow curve
(Fig. 3.2) so far. Responses from all the standard tensile tests are depicted in Fig. 3.6. As
anticipated, all the predicted force responses were almost identical for standard tensile
test (Fig. 3.6), which was utilized for estimating the conventional flow curve. Only the
Bai–Wierzbicki yield criterion with deviatoric associated flow rule produced slightly lower
responses, even though ct = 1.00 (Table 3.3). Nevertheless, the deterioration is negligible
in overall, because the yield criterion improved the remaining tensile tests of notched
cylindrical specimens (Fig. 3.7) and it had globally the lowest error (Table 3.4). It was 16%
compared to 21% for Kroon–Faleskog and 43% for von Mises yield criteria with associated
flow rules. Therefore, the Bai–Wierzbicki yield criterion with deviatoric associated flow
rule, which is the most complex one, will be utilized within further computations [51].
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Figure 3.6: Responses for standard tension and all plasticity models considered [51]

All errors are summarized in Table 3.4 [51].

Table 3.4: Deviations between the experiments and all plasticity models considered [51]

Specimen Von Mises Kroon–Faleskog Bai–Wierzbicki

Tensile
smooth cy- 0 0 1
lindrical [%]
Notched
cylindrical 3 3 2

with R13 [%]
Notched
cylindrical 7 6 4

with R6.5 [%]
Notched
cylindrical 4 3 1
with R4 [%]
Upsetting
notched cy- 2 4 2
lindrical [%]

Tensile
notched 15 3 4

tubular [%]
Torsional
notched 12 2 2

tubular [%]
Sum [%] 43 21 16
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All the remaining responses are depicted in Fig. 3.7 [51].
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Figure 3.7: Responses for experiments and computations, except for the standard tension
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The errors were computed according to

100
∑ |Fe − Fc|

Fe
, (3.24)

where Fe and Fc are the forces from experiment and computation, respectively, while all
the responses were sampled with 200 points [51].

3.3 Model of damage
The non-linear damage accumulation is one of the key features to the possible solution of the
problems with the non-proportional loading, although there have been some doubts [102]
or other modelling approaches [120]. Lemaitre and Dufailly [121] described eight different
methods of measuring the damage by the destructive as well as non-destructive methods
covering the fractography and variation of the following quantities: density, ultrasonic wave
propagation, cyclic plasticity response, tertiary creep response, microhardness, electrical
potential and finally, the variation of Young’s modulus, which is employed within the present
thesis. Other method of investigating the damage evolution lies in the non-proportional
tests, usually conducted on the notched tubular or cylindrical specimens under biaxial
loading (tension–torsion), and following numerical analysis [97, 122]. The problem is that
the damage accumulates in one material point when the specimen is pulled, but once the
specimen is twisted, the damage accumulation continues in a different location, which was
not critical in the first stage of loading during the tension. Theoretically, better results could
be obtained by the two-step tests [123, 124, 125], which consist of pulling the specimen
of one geometry until the fracture and then the same until a prescribed deformation.
Once the test is interrupted at this deformation, the specimen is machined into a new
geometry resulting in a different stress state, and pulled until the fracture. Cortese et al.
[126] incorporated the fracture strain into the damage accumulation power law, which is
micromechanically questionable as a completely different damage accumulation behaviour
may occur in very close locations. The exponent may be greater than one in one location
and lower than one in the other (for notched cylindrical specimen for example), therefore
the damage accumulation would be decelerating in one location while rapidly accelerating
in the other, which could be quite close to each other. Nevertheless, the most promising
seems to be the biaxial loading of cruciform specimen [127, 128, 129]. When carefully
prepared, there is no problem with migrating critical location or with the machining
between the two steps, which may introduce undesirable effects.

The degradation of Young’s modulus gives

D =
Ẽ

E
, (3.25)

where Ẽ is the actual (degraded) modulus of elasticity. Three semi-cyclic, or loading–
unloading, tests were conducted on the standard cylindrical specimen (Fig. 2.7). The
specimen was unloaded after each 2% incerement of engineering strain and then loaded
again with the rate of 1mm/min on Zwick Z250 Allround-Line, tCII, with Zwick multiXtens
extensometer having the gauge length of 30mm. Resulting Young’s modulus degradation
with fitted damage accumulation law is plotted in Fig. 3.8.
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Figure 3.8: Damage evolution and fitted non-linear law [132]

The damage accumulation law was proposed according to the trend of experimental
data, based on the double damage curve proposed by Manson and Halford [130] within
the low-cycle fatigue, which was actually first published in [131]. After simplifying and
adapting to the ductile fracture, the equation reads [80]

D = q1

∫ ε̄D

0

dε̄p
Cm + ε̄f

+ q2 (1− q1)

∫ ε̄D

0

(
ε̄p

Cm + ε̄f

)q2−1
dε̄p

Cm + ε̄f
, (3.26)

where q1 and q2 are the material constants, while q2 > 0 has to be always satisfied, and
Cm is the additional material constant relating the micro and macro perspective of the
damage indication. The non-linear law degenerates into linear, when either q1 = 1 or
q2 = 1 and it becomes polynomial as the law proposed by Xue [79] when q1 = 0. The
damage accumulation rate may be decelerating, when either 0 < q1 < 1 and 0 < q2 < 1 or
q1 > 1 and q2 > 1, or accelerating, when 0 < q1 < 1 and q2 > 1 or q1 > 1 and 0 < q2 < 1.

The material constants q1 and q2 were calibrated towards the experiments available
until the ultimate tensile strength (Fig. 3.8) [132]. Beyond that point, the deformation was
not uniform and therefore not directly readable in the location of damage accumulation
(necking section).

All the simulations have been done with the conventional flow curve (Fig. 3.2) up
to this point. From now on, the multi-linear flow curve of matrix was deployed in the
following form [132]

σ̃ = (1 + ε̄p)σy, (3.27)

so that finally, the yield function was used in the following form

f = σ̄ − wσ̃ = σ̄ − w (1 + ε̄p) kσy = σ̄ −
(
1−Dβ

)
(1 + ε̄p) kσy. (3.28)

The rest of the material constants, Cm and β, were calibrated against the standard tensile
test as depicted in Fig. 3.9, where ε̂f is the fracture strain for a particular test [132].

All the damage-related material constants are given in Table 3.5. It should be noted
that the loss of ellipticity and subsequent localization of field variables were not addressed.
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Figure 3.9: Flow curve of matrix with resulting force responses [132]

Table 3.5: Calibrated damage-related material constants [132]

q1 [–] q2 [–] Cm [–] β [–]

0.54 4.00 0.28 1.10
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Figure 3.10: Evolutions of stress triaxiality and normalized third invariant of deviatoric
stress tensor before the averaging

Finally, the points for ductile fracture criteria calibration were obtained through the
integration respecting the non-linear damage accumulation as [132]

ηa = q1

∫ ε̂f

0

η
dε̄p
ε̂f

+ q2 (1− q1)

∫ ε̂f

0

η

(
ε̄p
ε̂f

)q2−1
dε̄p
ε̂f
, (3.29)

ξa = q1

∫ ε̂f

0

ξ
dε̄p
ε̂f

+ q2 (1− q1)

∫ ε̂f

0

ξ

(
ε̄p
ε̂f

)q2−1
dε̄p
ε̂f
, (3.30)

where ξa is the average normalized third invariant of deviatoric stress tensor.
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The averaging was realized utilizing the trapezoidal numerical integration within
MATLAB R2019a with all the results summarized in Table 3.6. The evolutions of the
stress triaxiality and normalized third invariant of deviatoric stress tensor (Fig. 3.10) were
extracted for the integration from the crack initiation locations, which are highlighted in
Fig. 3.1, from the simulations depicted in Fig. 3.7 (carried out with the conventional flow
curve).

Table 3.6: Points used for the ductile fracture criteria calibration

Fracture Average Average normalized third
Specimen strain stress triax- invariant of deviatoric

[–] iality [–] stress tensor [–]

Notched
cylindrical 0.266 0.606 1.000
with R13
Notched
cylindrical 0.193 0.790 1.000
with R6.5
Notched
cylindrical 0.144 1.001 1.000
with R4
Upsetting
notched cy- 1.463 −0.369 −0.991
lindrical
Tensile
notched 0.193 0.672 0.001
tubular
Torsional
notched 0.274 −0.001 −0.002
tubular

3.4 Model of failure

Three ductile fracture criteria were selected so that a broad range of possibilities is
examined and then calibrated towards the points from Table 3.6. The first was extended
Mohr–Coulomb criterion proposed along the Bai–Wierzbicki yield criterion, then the model
proposed on a different basis by Lou et al. [53], and finally the KHPS2 criterion developed
by the author with his colleagues. The whole calibration was realized within MATLAB
R2019a. The minimum of constrained non-linear multi-variable target function was found
using the created optimization problem structure that included the initial guess of material
constants and their lower and upper bounds where appropriate.
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3.4.1 Extended Mohr–Coulomb criterion

The following polynomial law inspired by the Hollomon one [46] may be adopted as

σ̄f = kKε̄nf , (3.31)

where σ̄f is the fracture stress.
Then, the extended Mohr–Coulomb criterion will be called the one proposed by Bai

and Wierzbicki [45] and slightly modified by Kubík et al. [51] as

ε̄f =

[
K

M2

k

(√
1 +M2

1

3
cos

(
1

3
arcsin[ξ]

)

+M1

[
η +

1

3
sin

(
1

3
arcsin[ξ]

)])]− 1
n

, (3.32)

where M1 and M2 are the material constants. It is slightly different from what was
proposed by Bai and Wierzbicki [45] (Eq. 1.15), because it uses the yield correction
function exactly without any simplifications. Moreover, Eq. 3.32 is not formally correct as
the stress–strain relationship is used in the multi-linear form with respect to Eq. 3.27 and
not in the Hollomon [46] inspired power law-based form (Eq. 3.31). Finally, the cut-off
stress triaxiality is

ηc = − 1

M1

√
1 +M2

1

3
cos

(
1

3
arcsin[ξ]

)
− 1

3
sin

(
1

3
arcsin[ξ]

)
. (3.33)

The first constraint ηc − ηa < 0 ensures that there is no negative fracture strain, which
is physically unreal, and common to all criteria utilized within this thesis. The second
constraintM1 > 0 makes sure that the cut-off plane will be convex. The strength coefficient
may be even omitted (set equal to one) and the strain hardening exponent considered
as another material constant for calibration along with M1 and M2, which gives more
flexibility to the criterion [132, 133]. Nevertheless, such an approach was not pursued
within the present thesis. It should be noted that it does not seem to be of such an
importance, when two material constants remain to be calibrated.

Eq. 3.31 was fitted to the conventional flow curve (Fig. 3.11) as all the simulations for
calibration were done using that constitutive law, while the fracture stress was considered
to be an equivalent stress, the yield correction function equal to one and the fracture
strain be an equivalent plastic strain. Calibrated material constants are altogether given
in Table 3.7. It may be pointed out that even the simplest polynomial law is often capable
of a good fit. Therefore, more complicated formulas (Fig. 2.1) are not necessary.

Table 3.7: Calibrated material constants for the extended Mohr–Coulomb criterion

K [MPa] n [–] M1 [–] M2 [MPa]

789.1 0.190 0.187 334.2
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Figure 3.11: Polynomial constitutive law fitted to the conventional flow curve

3.4.2 Lou–Huh criterion

Lou–Huh criterion will be called the one proposed by Lou et al. [53] in the form that reads

ε̄f =K3

 2√
3
[
1 + tan2

(
−1

3
arcsin[ξ]

)]
−K1

×

〈
3

1 + 2K4 + 3K5

η +K4

√
3− tan

(
−1

3
arcsin[ξ]

)
3
√

1 + tan2
(
−1

3
arcsin[ξ]

) +K5

〉−K2

, (3.34)

where K1, . . . , K5 are the material constants with a condition that

K4 6= −
1

2
− 3

2
K5. (3.35)

Furthermore, the cut-off stress triaxiality is

ηc = −K4

√
3− tan
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−1

3
arcsin[ξ]

)
3
√

1 + tan2
(
−1

3
arcsin[ξ]

) −K5. (3.36)

Correct calibration is enforced by the constraint ηc − ηa < 0 and the convexity of cut-off
plane, discussed further, is reached by the condition K4 > 0.

The constraint ηc = −0.5 at ξ = −1 was posed in order to obtain the cut-off in
a reasonable range as the criterion is too flexible without that condition. It is a similar
approach to the one presented by Lou et al. [53] or Lou and Yoon [54]. Finally, all the
material constants are presented in Table 3.8.
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Table 3.8: Calibrated material constants for the Lou–Huh criterion

K1 [–] K2 [–] K3 [–] K4 [–] K5 [–]

1.965 0.855 0.261 1.579 −0.026

3.4.3 KHPS2 criterion

KHPS2 criterion proposed by Šebek et al. [132], which was actually first published by Hůlka
[134], follows the KHPS criterion proposed by Kubík et al. [135]. It has a hyperbolic shape
while the foci of rectangular hyperbolas obey quadratic dependency on the normalized
third invariant of deviatoric stress tensor. The fracture strain reads

ε̄f =

[
1

2

(
G4

〈η − ηc〉
+

G5

〈η − ηc〉

)
− G6

〈η − ηc〉
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2

(
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〈η − ηc〉
− G5

〈η − ηc〉

)
ξ +

G6

〈η − ηc〉
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where G1, . . . , G6 are the material constants. The parabolic cut-off stress triaxiality is

ηc = −
(
G3 +

G1 −G3

2
−G2

)
ξ2 − G1 −G3

2
ξ −G2. (3.38)

The first three material constants, G1, . . . , G3, are the additive inverses of cut-off plane
distance in the stress triaxiality, as illustrated in Fig. 3.12. The last three material
constants have to be positive, G4, . . . , G6 > 0, because those influence the vertices of
rectangular hyperbolas (Fig. 3.12). In order to proper calibrate the criterion, the constraint
ηc − ηa < 0 has to be satisfied along the convexity of the cut-off stress triaxiality required
by the condition posed on the signed curvature in the Cartesian coordinates as

κ =

d2ηc
dξ2(

1 +
(

dηc
dξ

)2
) 3

2

=
− (G1 − 2G2 +G3)(

1 +
(
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2

)2
) 3

2

> 0. (3.39)

This can be solved more easily using the second derivative of a function. Therefore, the
cut-off is convex if

d2ηc
dξ2

= − (G1 − 2G2 +G3) > 0, (3.40)

which is consistent with Eq. 3.39. It was discussed earlier that this cut-off shape is
more natural when expecting lower ductility for generalized shear (ξ = 0) than for the
axisymmetric tension or compression. Nevertheless, this is on the contrary as it is utilized
sometimes [7, 53, 54, 136].

All the calibrated material constants are summarized in Table 3.9.
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Figure 3.12: Meaning of individual material constants of KHPS2 criterion

Table 3.9: Calibrated material constants for the KHPS2 criterion [51]

G1 [–] G2 [–] G3 [–] G4 [–] G5 [–] G6 [–]

0.152 1.425 0.488 0.123 0.198 0.395

3.4.4 Comparison of calibrated ductile fracture criteria

The performance of the calibration may be assessed similarly as in the case of force
responses (Eq. 3.24). It is based on the deviations of points used for the calibration and
the calibrated ductile fracture criteria itself as

100
|ε̂f − ε̄f |

ε̂f
. (3.41)

The results are summarized in Table 3.10. It is clear that the extended Mohr–Coulomb and
Lou–Huh criteria resulted in similar errors in overall, while the KHPS2 criterion performed
approximately ten times better. It is surprising that the five-parametric Lou–Huh criterion
resulted in an error comparable to the extended Mohr–Coulomb criterion, which has just
two material constants. Although, the performance of Lou–Huh criterion could have
been slightly better, if the negative cut-off stress triaxiality went into thousands, which is
unrealistic of course.
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Table 3.10: Deviations of points used for calibration from the calibrated fracture criteria

Specimen Extended Mohr–Coulomb Lou–Huh KHPS2

Notched
cylindrical 11 16 1.8

with R13 [%]
Notched
cylindrical 2.0 5.5 0.2

with R6.5 [%]
Notched
cylindrical 12 28 0.7
with R4 [%]
Upsetting
notched cy- 0.2 0.2 0.4
lindrical [%]

Tensile
notched 18 9.1 2.3

tubular [%]
Torsional
notched 16 3.5 1.0

tubular [%]
Sum [%] 59 62 6.5

The states of plane stress and cut-off stress triaxialities are compared in Fig. 3.13,
where σ2 and σ3 are the second (middle) and the third (minimum) principal stresses. The
regions of plane stress with corresponding zero principal stresses are highlighted in Fig. 3.13
too. In Figs. 3.13 and 3.14, the blue square represents the upsetting notched cylindrical
specimen, the magenta hexagram represents the tensile notched tubular specimen, the
magenta diamond represents the torsional notched tubular specimen and the red circles
represent the notched cylindrical specimens.

All the calibrated ductile fracture criteria with respective points for calibration that
were described earlier are depicted in Fig. 3.14. It can be seen that both the extended
Mohr–Coulomb and Lou–Huh criteria have more flat cut-off planes than KHPS2 criterion.
Moreover, the extended Mohr–Coulomb criterion has the cut-off plane further in the
negative stress triaxiality.
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Figure 3.14: Calibrated ductile fracture criteria with the points used for fitting



4 Application 57

4 Application

The above developed material model is applied to the small punch testing and three-point
bending in order to reveal the predictability. These two experiments were not included
in the calibration procedure. The quantitative as well as qualitative assessment was
conducted.

4.1 Small punch testing

Three small punch tests were conducted using the Zwick Z250 Allround-Line, tCII, with
the Zwick multiXtens extensometer and loading rate of 1mm/min. The detailed drawing
of the apparatus with specimen is given in Fig. 4.1 as the test has not been standardized
yet. The responses are given in Fig. 4.1 [101], even though the experiments were first
published by Šebek et al. [137].

The cylindrical rod with a diameter of 8±0.02mm was machined with surface roughness
of 0.4 mm. The pieces of 0.6 ± 0.02mm thickness were cut by the electrical discharge
machining. Then, the grinding using the sandpapers with P600, P1200 and P2000 roughness
was applied. Finally, the polishing with 3 and 1 mm grain-sized diamond paste was utilized
until the required thickness of 0.5± 0.005mm was achieved [101].
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Figure 4.1: Small punch testing apparatus and responses from experiments (the final
punch displacements are approximate)
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The time of the simulation was 0.1 s, while the mass scaling with the time increment
of 1 × 10−7 s was introduced in order to save some computational time. The kinetic
energy was negligible when compared to the total one, so the quasi-static loading was
maintained. The specimen was discretized with C3D8R elements having the characteristic
size of 0.075mm in the central zone (Fig. 4.2). The ball and tools were meshed with R3D4
elements with the characteristic size of 0.025mm. The friction coefficient of 0.1 was used
after the numerical analysis of its role.

Figure 4.2: Mesh layout for the small punch test specimen

The experimental and computational responses (Fig. 4.3) represent a quantitative
measure. As the results were obtained, the Lou–Huh criterion was recalibrated with
a constraint ηc = −1 at ξ = −1 with consequently more severely overpredicting the
experimental force response unfortunately. Even worse result was achieved when the
calibration was carried out again, but without any constraint this time. It yielded in an
unreal cut-off stress triaxiality around −8 × 104, but quite surprisingly in a fit better
approximately by 10% in total when compared to the results in Table 3.10. On the other
hand, extended Mohr–Coulomb and KHPS2 criteria underpredicted the maximum force.
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Figure 4.3: Experimental and computational force responses for the small punch testing
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The fracture surfaces in Fig. 4.4 correspond to the three specimens that were tested.
The observations were made after conducting the tests with the use of the field emission
SEM ZEISS Ultra Plus equipped with an auto-emission cathode [101].
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0.2mm 0.2mm 0.2mm

Figure 4.4: Damage parameter fields compared to the experimental obtained micrographs
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The qualitative comparison was addressed by means of the fracture surfaces (Fig. 4.4).
All the computational fracture surfaces were obtained from three different moments
corresponding to the respective punch displacements. The extended Mohr–Coulomb and
KHPS2 criteria performed in a similar manner. Lou–Huh criterion predicted more radial
cracks and late cracking, which is apparent especially for the punch displacement of
0.752mm (Fig. 4.4). Similar amount of elements was removed by all the criteria.

All the results presented here are quite similar to those obtained with simpler yield
criterion by Šebek et al. [101].

4.2 Three-point bending
The three-point bending was another test for the validation of calibrated criteria. Zwick
Z250 Allround-Line, tCII, with the Zwick multiXtens extensometer and loading rate of
2mm/min were employed. The specimen had several randomly located notches, which
caused a non-symmetrical deflection. The detailed drawing is in Fig. 4.5 along with the
force responses of the two specimens. The punch had a radius of 5mm. The supports
had the span of 160mm and same radii as the punch. The specimens were placed on the
supports so that the bigger hole was centred [99].

Sensor
arm position 0 5 10 15

Displacement [mm]

0

2

4

6

8

Fo
rc
e
[k
N
]

Figure 4.5: Drawing and responses of the three-point bending

The first sensor arm was stationary and touching the fixed testing machine frame,
while the second sensor arm was placed on the edge of the surface notch closer to the
larger hole, as highlighted in Fig. 4.5. A bouncing of the sensor arm was observed on
the force–displacement responses. It occurred immediately after the rupture, when the
energy was released and the crack propagated. The bounce can be recognized by the
part of the responses, where the displacement is decreasing, which would be irrational
otherwise. It should be noted that the bouncing of the sensor arm was captured by the
optical measurement described later as well.

The crack initiated at the notch surface location I, as depicted in Fig. 4.6. It propagated
laterally and inwards the material along the path II until the first section failed. After
some additional loading, the secondary cracking initiated at the notch surface location
III and propagated the same way as in the case of first cracking. The lateral rupture was
finalized with the shear lips (Fig. 4.6).



4 Application 61

Sh
ea
r
lip

s

I

II

III

IV

Figure 4.6: Fractured specimens after the three-point bending test [99]

Again, the C3D8R element was deployed with the characteristic size of 0.075mm in
the regions of potential cracking. These regions with mapped mesh were surrounded by
a free mesh with a characteristic element size of 0.2mm, which finally transformed into the
structured coarse mesh of 2mm characteristic element size in the remote areas (Fig. 4.7).
The characteristic element size of 0.075mm was along the width everywhere. The punch
and supports were modelled as rigid bodies with R3D4 elements. The punch had the
characteristic size of 0.075mm and the supports had the same size along the width, but
0.5mm in the circumferential direction. There were approximately two millions of nodes in
total. The simulation time was 0.1 s. There was a sudden drop in forces for this bi-failure
test, which could lead to some oscillations. In order to avoid excessive vibrations, the time
increment of 5× 10−8 s was enforced – that is twice lower than in other simulations where
the mass scaling was deployed, but still providing a sufficient decrease of the computational
time, which was several weeks using the standard personal computer. The punch had
a prescribed velocity on the contrary to other simulations, where the displacements and
rotations were exploited. It should be noted that no symmetry was used, as in the case of
small punch testing.

The force responses are compared in Fig. 4.8. It is clear that the extended Mohr–
Coulomb criterion predicted the failure of the first section slightly earlier. Then, the
computationally predicted responses were still captured well for the continuing loading
until the onset of final rupture, where the crack initiation was predicted late by the Lou–
Huh criterion. Nevertheless, all the criteria predicted very slow crack growth, while the
secondary cracking was rapid in experiments, as in the case of the first failure. Moreover,
the shocks may be traced in the force responses occurring after the first cracking, when
a sudden drop of force appeared. These are due to the dynamic nature of the crack
propagation and its representation by the explicit finite element calculation algorithm.
Sudden change from a quasi-static behaviour to the dynamic propagation is followed by
the parasitic oscillations, which could be treated only at the expense of much higher
computational demands.
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Figure 4.7: Assembly and detail of meshed notched block for the three-point bending
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Figure 4.8: Three-point bending force responses from computations and experiments

The fracture surfaces from experiment and numerical simulations are displayed in
Fig. 4.9. It is clear that no slant fracture was predicted by the KHPS2 criterion. It was
captured by the extended Mohr–Coulomb and Lou–Huh criteria, but only in the first stage
of cracking. Moreover, the computationally predicted shear lips were smaller than those
observed experimentally. Additionally, the Lou–Huh criterion exhibited some unusual
crack propagation in the final stage of cracking forming a shallow groove.
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Figure 4.9: Fracture surfaces from experiments compared to those obtained
computationally, where the field of damage parameter is displayed

There is a significant difference, when compared to Kubík et al. [99], who used a simpler
plasticity model – Kroon–Faleskog yield criterion – with almost the same fracture criteria
(there are slight differences in formulation of extended Mohr–Coulomb and Lou–Huh
criteria) and reported much pronounced shear lips closer to reality and even in the second
stage of cracking. On the other hand, it seems to be a trade-off as the accuracy in force
responses was worse, which is probably given by less accurate model of plasticity, which
probably influenced quite surprisingly the appearance of fracture surfaces extensively, while
still not being that different from Bai–Wierzbicki yield criterion, see Subsection 3.2.5.

Last but not least, the digital image correlation was done in order to evaluate the model
performance. The test was recorded by the mono digital camera Basler acA2000-165um
with a resolution of 2048× 1088 px. The images were captured with a frame rate of 10 fps.
A speckle pattern was created on the surface by the black spray on the white background so
that the displacements could be calculated with Mercury RT x64 2.6. The grid spacing was
3 px, while the size of 1 px was 0.058mm. This validation concerns mainly the plasticity
as it was executed prior to the fracture. The contours may look the same for all the cases
in Fig. 4.10, but there are minor differences due to the coupled approach, where damage
and plasticity mutually influence each other. There was a good conformity between the
experimental observation and calculations for the instant corresponding to the deflection
of 4.5mm (highlighted by the vertical black dashed line in Fig. 4.8).
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5 Conclusions

The present thesis deals with the ductile fracture under quasi-static monotonic loading
and room temperature. The aluminium alloy 2024-T351 was studied. It was found that
it is pressure and Lode dependent both for the plasticity as well as failure. Two Lode
dependent plasticity yield criteria were calibrated, but the one with pressure dependency
resulted in better responses, when compared to the experiments. Then, the non-linear
damage accumulation law was calibrated by means of loading–unloading (semi-cyclic) tests
of smooth cylindrical specimens. Finally, three ductile fracture criteria were calibrated
towards the six experiments covering the tensile notched cylindrical specimens, tensile and
torsional notched tubular specimens and upsetting notched cylindrical specimen, which was
uniquely designed for that purpose. It was found that the latter experiment successfully
substituted the classical compression test, which exhibits highly non-proportional evolution
of the state variables in the crack initiation location. Moreover, the onset of fracture is
very difficult to localize due to the barrelling of the smooth cylinder and presence of the
friction on its faces. The non-proportionality may distort the results, when such affected
state variables were used for the calibration of ductile fracture criteria, which was omitted
in the present thesis.

The final part of this work focuses on a successful application of the calibrated models
on the two distinct tests. It constitutes from the small punch testing and three-point
bending. Computations of the first test revealed a good conformity with experiments
regarding both the quantitative as well as qualitative measures. The latter of the two
validation tests was more complicated as it exhibited a bi-failure mode of rupture. The
force responses of the three-point bending were in a very good correspondence with the
experimental observation, so as the fracture surfaces and the strains evaluated by the
digital image correlation on the specimen’s surface prior to the first cracking onset.

5.1 Future studies

There are several things, which might be improved in the future. The ductile fracture
criteria may be calibrated more reliably, when the tensile flat grooved specimens were
included. This can cover the pressure dependency for the generalized shear more thoroughly.
Then, the problem with predicted Lode dependency may arise, when the non-quadratic
yield criterion was used. The predicted stress state is crucial as it serves as an input into
the calibration procedure. However, it could be solved by implementation of non-associated
flow rule [138]. Moreover, it could also help with better prediction of deformations, which
might be unnaturally distorted with non-quadratic yield criterion [139].
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The material anisotropy could be reflected in the yield criterion too. Then, it may
explain the scatter in results across the publications, where the isotropic behaviour was
adopted for the finite element modelling. Nevertheless, then the model becomes much
more complicated.

There is another issue, as briefly discussed before, which arises due to the utilization
of a coupled approach, when the plasticity is influenced by the damage accumulation
via the flow curve softening. The problem is the loss of ellipticity and subsequent mesh
dependency leading to the localization of the field variables disregarding the element size.
This could be successfully solved in a way presented by Nguyen et al. [140] for example.

Last but not least, the more reliable experimental tracking of the damage accumulation
can be realized, as discussed in detail earlier. This can involve the non-proportional
biaxial loading of notched tubular specimens or better of the cruciform specimens. The
present loading–unloading technique, which was utilized here, was originally developed for
a different group of models in the scope of continuum damage mechanics. Therefore, more
physically sound background is needed.
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A Stress state characterization

A geometrical representation may be realized within the Cartesian coordinate system
of principal stresses not ordered according to the magnitude (σI, σII, σIII) – the Haigh–
Westergaard space [141, 142]. The space cannot be formed with principal stresses ordered
according to the magnitude as for example σ1 = σ2 = 0MPa and σ3 = 1MPa is inadmissible.
Otherwise, only two octants would be needed. The Cartesian coordinate system is
illustrated together with cylindrical (r, θL, z) and spherical (%, θL, ϕ) coordinate systems in
Fig. A.1, where z is the axial coordinate, % is the radial coordinate of spherical coordinate
system and ϕ is the polar angle according to

ϕ = arccotan

(
3√
2
η

)
. (A.1)

σII

σI

σIII

ϕ

θL
Rendulic (p) plane
(σI + σII + σIII = 0)

z (σI = σII = σIII)

r

0

√
2
3
σ̄

√
3σm

%

Deviatoric (octahedral) plane
(σI + σII + σIII = constant)

Figure A.1: Geometrical representation of the stress state
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The deviatoric or octahedral plane is any plane perpendicular to the axis of the first and
seventh octants (perpendicular to the hydrostatic axis where σI = σII = σIII). A special
case of such a plane is Rendulic or p plane, which above the perpendicularity to the
hydrostatic axis also contains the origin of Haigh–Westergaard space (Fig. A.1).

There are other deviatoric state variables apart from the normalized third invariant
of deviatoric stress tensor and Lode angle. The one very close to Lode angle θL5 is the
azimuth angle ranging −p/6 ≤ θA ≤ p/6 defined as

θA = θL −
p

6
. (A.2)

The azimuth angle can be normalized as

θ̄ = −6

p
θA, (A.3)

so the range is −1 ≤ θ̄ ≤ 1. Then, the Lode parameter has the same range as the
normalized Lode angle θ̄, −1 ≤ L ≤ 1, with the following definition

L =
√

3 tan
(
−p

6
θ̄
)
. (A.4)

Finally, all the deviatoric stress state measures are graphically represented in Fig. A.2
under the condition of plane stress.
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of deviatoric stress tensor [–]
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0 p/6
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of stress – applicable to
all deviatoric variables)

σ1 = σ, σ2 ∈ (0, σ), σ3 = 0
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0, 1

2
σ
)
, σ2 = 0, σ3 = −1

2
σ

σ1 = 0, σ2 ∈ (−σ, 0), σ3 = −σ

σ1 = 1
2
σ, σ2 = 0, σ3 ∈

(
−1

2
σ, 0
)

Figure A.2: Graphical representation of the deviatoric stress state measures

5 Lode angle is defined with the help of the normalized third invariant of deviatoric stress tensor in
Eq. 1.31.
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